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Abstract

Using 3D hand poses as the input of user interfaces can enable many

novel human-computer interaction applications. However, conven-

tional solutions for precisely reconstructing the hand poses are

either vision-based, which are compute-intensive and may cause

privacy issues, or wearable devices-based, which are intrusive to

users. In this paper, we propose RAM-Hand, a Robust Acoustic

3D Multi-Hand pose reconstruction system built on a microphone

array. Our RAM-Hand system can support multiple hands and

is designed to be highly adaptable to new scenarios even when

training data is limited. Speci�cally, it should robustly accommo-

date variations in environment, subject, and hand positions. To

achieve this, on one hand, we propose a customized signal process-

ing pipeline to segment multiple hands’ re�ections and extract the

features corresponding to each hand, then feed those features into

a transformer-based neural network for precise pose reconstruc-

tion. On the other hand, to tackle the challenge that the training

data is limited, we propose a series of data augmentation methods

to generate virtual training data, and utilize contrastive learning

to ensure our model behaves well on new subjects. We conduct

extensive experiments on a real-world microphone array testbed to

evaluate the performance of the proposed system. The results show

that our RAM-Hand system can localize each hand joint with an

average error of 10.71 mm, handle multiple hands, and generalize

well to the above mentioned new scenarios.
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1 Introduction

In recent years, interacting with smart devices through hand poses

has proven e�ective in many innovative applications. When 3D

hand poses are precisely reconstructed, users can control virtual ob-

jects more naturally and accurately. Hand pose recognition can ben-

e�t a broad range of applications, including VR/AR games, remote

collaboration, and smart home control. Compared to traditional

interfaces like keyboards and touchpads, using hands to directly

drag and move content in remote meetings o�ers greater �exibil-

ity in organizing presentations. Similarly, grabbing an object in a

video game with a hand is more user-friendly than using a mouse.

Consequently, there is growing interest in developing hand pose

reconstruction systems.

Currently, the primary approaches to hand pose reconstruction

are vision-based methods [5, 16, 44, 56–58, 88] and wearable device-

based techniques [20, 31, 46, 87]. Vision-based methods require

recording video via cameras, which raises privacy concerns in many

scenarios and can su�er signi�cant performance degradation under

poor lighting conditions or when occlusions occur. Additionally,

the heavy computational demands of vision models limit their

implementation on edge devices, which typically have restricted

processing power. Wearable device-based approaches, on the other

hand, require users to wear specialized gloves or wristbands, which

may make the users uncomfortable.

To address those limitations, researchers are exploring the use of

wireless signals to estimate hand poses [29, 36, 38], o�ering privacy-

preserving, computationally e�cient, and device-free sensing that

is una�ected by lighting conditions and capable of penetrating

certain occlusions. An existing work mmHand [29] proposes to

reconstruct the hand pose using a mmWave Radar. However, due

to poor elevation resolution and the FFT-based method it uses, it

can reconstruct only one hand’s poses with limited accuracy.

Recently, researchers have turned to acoustic signals for hand

pose reconstruction. Compared to RF signals, acoustic signals are

more ubiquitous, cost-e�ective, �exible to deploy, and o�er high res-

olution. Acoustic sensing systems utilize microphones and speakers,
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which are not only low-cost but also widely integrated into every-

day smart devices, minimizing deployment costs. Moreover, the

�exibility of acoustic devices allows them to be easily customized

to meet the requirements of diverse applications. Beyond-Voice

[36] has demonstrated the potential of estimating hand poses using

commercial microphone arrays. However, it also supports only a

single hand and relies solely on range features, which limits its ap-

plicability and generalizability. Therefore, how to build an acoustic

hand pose reconstruction system that can support multiple hands

and stay robust across diverse scenarios, including varying envi-

ronments, subjects, and hand positions, remains an open research

question.

To achieve this goal, there are some challenges to address. As

collecting acoustic sensing data is labor-intensive, the training data

is typically limited and unable to cover all scenarios. Firstly, if the

training data is collected from only one hand, the trainedmodel may

struggle with multi-hand scenarios, as accurately reconstructing

poses with multiple hands requires precise segmentation of each

hand’s re�ections at the feature level. This is not trivial because the

hands may be close to each other and di�cult to separate. Secondly,

it’s impractical to collect training data for every possible position

and environment, making it challenging to develop a model that

generalizes well to new position or environment. Finally, individual

users vary in hand motion habits, hand sizes, and shapes, which can

signi�cantly impact re�ection features. As a result, achieving strong

performance for users not included in the training set remains a

challenging task.

To address the aforementioned challenges, we propose a sig-

nal processing pipeline that e�ectively extracts range, angle (az-

imuth/elevation), and velocity features, then segments the re�ec-

tions of each hand in 3D space, enabling our model to handle

multiple hands. We apply the Minimum Variance Distortionless

Response (MVDR) beamforming in the 3D space to improve the

angular resolution in both the azimuth and elevation dimension to

better segment nearby hands. To mitigate performance drops when

the system is applied to new hand positions, we propose a series of

data augmentation techniques to generate virtual training samples

from real collected data, enhancing the system’s robustness. Addi-

tionally, we apply contrastive learning to our transformer-based

neural network to improve cross-subject inference performance, as

this approach guides the model to focus on subject-independent

features during training.

We implement our RAM-Hand (RobustAcoustic 3DMulti-Hand

pose reconstruction) system on an L-shaped microphone array with

16 microphones and a speaker, conducting extensive experiments

to evaluate its performance. Experimental results show that the pro-

posed RAM-Hand system can achieve an average joint localization

error of 10.71 mm when tested on 12 hand gestures. We also per-

form extensive testing in various scenarios not seen in the training

set, with results demonstrating the robustness of our system.

We summarize the main contributions of our work as follows:

• We propose a robust acoustic hand pose reconstruction sys-

tem, RAM-Hand, capable of supporting multiple hands and

generalizing well to data collected across various scenarios,

including unseen environments, hand positions, and subjects.

To the best of our knowledge, this is the �rst multi-hand pose

reconstruction system using wireless signals.
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Figure 1: System Overview

• We design a customized signal processing pipeline that can

extract range, angle, and velocity features from acoustic

signals, and segments the re�ections of each hand, enabling

simultaneous reconstruction of multi-hand poses.

• To address the limitations of training data, we propose a

series of data augmentation techniques to enhance the sys-

tem’s generalizability.

• We incorporate contrastive learning into our transformer-

based neural network to overcome the challenges of cross-

subject inference.

• We develop a microphone array testbed tailored for multi-

hand pose reconstruction, implement our system on it, and

conduct extensive experiments on real-world data to evalu-

ate the e�ectiveness of our proposed system.

The remainder of this paper is organized as follows: Section 2

provides an overview of the whole RAM-Hand system. Section 3

details our signal processing pipeline and neural network design.

In Section 4, we present the testbed, experimental settings, and

extensive results. Section 5 reviews existing work in related areas.

Finally, Section 6 o�ers our concluding remarks.

2 System Overview

In this paper, our proposed RAM-Hand system aims to precisely

reconstruct the poses of multiple hands using acoustic signals, even

the training data are collected when there is only a single hand. Our

system should also remain robust when applied to new scenarios

where the environments, the users, and the hands’ relative locations

are not seen in the training dataset, which is a common case in

real-world applications. Our proposed system contains three main

components: Data collection, signal processing pipeline and hand

pose reconstruction, as shown in Figure 1.

2.1 Data Collection

To record high quality acoustic data for hand pose reconstruction,

we build an L-shape microphone array with 16 microphones and a

speaker. A Leap Motion Controller (LMC) is employed to collect

precise 3D hand joint locations as the ground truth to train our

neural network.

2.2 Signal Processing Pipeline

We propose a holistic signal processing pipeline to extract useful

features from raw data to train a robust model. First, we employ

the Minimum Variance Distortionless Response (MVDR) algorithm,

an advanced super-resolution technique with high angular resolu-

tion, to extract spatial features. MVDR scans the entire 3D space,

ampli�es signals from speci�c directions, and suppresses noise
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from others, thereby enabling the model to extract �ne-grained 3D

features for each hand from overlapping signals. To address the

challenge of limited training data, which hinders generalizability to

new scenarios, we apply data augmentation techniques to generate

virtual training samples. The generated virtual training samples

expand the training dataset to new scenarios and thus improve the

robustness of the trained model.

2.3 Hand Pose Reconstruction

With the collected and augmented training data, we design a

transformer-based neural network to reconstruct the 3D hand poses.

To address the challenge of cross-subject inference, we leverage

contrastive learning to guide our model to only focus on subject-

independent features to improve the performance when applied to

new users not in the training set. The hand pose predicted by the

deep learning model is the joint location relative to the root joint,

so we further use geometric relations to localize the root joint and

generate the complete hand pose.

3 Methodology

To precisely reconstruct the 3D hand poses when there are multiple

hands and make the system remain robust when applied to new

data collected in new environments, at new positions, and from new

subjects, we �rst transmit an inaudible FMCW signal and record

the echo,as introduced in Section 3.1. Then, we preprocess the

recorded signal (Section 3.1) and extract range-azimuth-elevation

features (Section 3.3) using MVDR. After that, we can detect and

segment re�ections corresponding to each target hand (Section 3.4),

which enables our system to handle arbitrary number of hands

simultaneously and avoids the interference from background re-

�ections. When we know the position of each hand, we can extract

the velocity-azimuth-elevation features of each hand (Section 3.5),

which is also important for hand pose reconstruction. The above

signal processing operations are shown in Figure 2. To handle the

hands whose location is not in the training dataset, we apply a series

of data augmentation methods (Section 3.6) to the collected training

data to improve the generalizability of our system. We use both

the real data and the augmented data to train a transformer-based

neural network (Section 3.7) to predict the 3D hand poses for each

hand. To make our system generalize well on subjects not in the

training dataset, we utilize contrastive learning in our neural net-

work design to make the model only focus on subject-independent

features. Because the hand pose predicted by our model is each

joint’s location relative to the root joint, we use geometric relations

to localize the hand as the root joint location (Section 3.8).

3.1 FMCW Signal Basics

Frequency Modulated Continuous Wave (FMCW) signal, or called

chirp, is a pivotal technology in wireless sensing, renowned for its

precise determination of the range, velocity, and angle of objects.

We �rst mix the transmitted signal, () (C) and the received signal

that is re�ected back from an object to the receiver (' (C) by mul-

tiplying them and applying a low-pass �lter (LPF) to remove the

high-frequency component, we can get the Intermediate Frequency

(IF) signal, denoted as B�� (C):

B�� (C) =
U

2
cos

(

4c 5min

3

2
+ c 

(

43C

2
−
432

22

))

, (1)

where 5<8= is the chirp start frequency and  is the chirp slope,

U denotes the path loss and 2 denotes the speed of wave. 3 is the

distance between the radar and target. The traditional method to

process FMCW signal is applying range, Doppler and angle FFT

to the IF signal [21]. To di�erentiate received signal components

re�ected from various ranges, a Range-FFT operation is applied

to the samples of B�� (C) within a chirp for signal separation. This

operation transforms the frequency spectrum of B�� (C) into the

range spectrum. To additionally determine the target’s velocity, we

can performing an additional FFT operation, known as Doppler-

FFT, along the dimension of di�erent chirps. Except for the range,

the angle of the re�ection signal relative to the sensing device is

also important to localize the object. The angle can be estimated by

utilizing signals from multiple receivers in an array. By applying

a third FFT operation along the receiver dimension of the signals,

known as Angle-FFT, the sensing system can generate a Range-

Angle spectrum then detect the object’s position.

Using the above mentioned methods, the sensing resolution of

FMCW signal in terms of range, velocity, and angle will be 2
2� ,

_
2)5

, and 2

# , respectively. We can see that the range resolution is

dicided by the bandwidth of the signal and the angular resolution is

decided by the number of the microphones in the array. Therefore,

our system plays an inaudible 16 - 22 kHz FMCW signal, which

is almost inaudible to most people while has enough bandwidth.

We apply a hanning window to the FMCW signal to improve the

SNR and avoid the audible sound leakage [33]. To enhance the

angular estimation, we design an L-shaped microphone array with

16 microphones to record the echo. This microphone array consists

of two 8-microphone linear sub-arrays which are perpendicular to

each other, so it can capture the angle features in both azimuth and

elevation. Unlike a traditional rectangular or square array—which

would require a number of microphones that increases quadrati-

cally with the resolution in the azimuth and elevation dimensions,

the L-shaped design o�ers a �ne-grained angular resolution while

keeping the total required number of microphones relatively low,

thereby balancing the computational cost.

3.2 Data Pre-processing

To remove noise, calibrate o�set caused by system delay, we need

to pre-process the data before extracting the features.

3.2.1 System Delay Calibration. Utilizing FMCW signals to esti-

mate range information requires precise synchronization between

the speakers and the microphones. Therefore, it’s necessary to cali-

brate the delay caused by the hardware system. However, the system

delay is not a constant and it can vary each time the system restarts.

To accurately calibrate this delay, we utilize the following fact: the

LoS (line-of-sight) signal has much stronger amplitude than all the

re�ected signals because the signal goes from the speaker directly

to the microphones, and the distance between the speaker and each

microphone is �xed. Therefore, we can use the LoS re�ection as

an anchor to calibrate the system delay. Speci�cally, we assume

that the speaker will start playing the signal slightly later than the
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time that the microphones begin recording, which means that the

estimated ToF (time-of-�ight) will contain the system delay. Thus,

we can �rst mix the transmitted and received signal to generate the

IF signal to the �rst few chirps then apply range FFT [21] on them.

We localize the frequency bin with the highest energy and derive

the corresponding distance. In our microphone array, the distances

between the speaker and microphones are �xed, so we can derive

the system delay by subtracting the propagation distance of the

LoS path from the measured distance and dividing the result by the

sound speed. After that, we calculate the number of delayed samples

by multiplying the time delay and the sampling rate. Finally, we

can shift the raw acoustic data by the delayed samples to calibrate

the system delay for the following signals. This calibration process

can be done automatically at the beginning of each recording and

only takes tens of milliseconds, which can be easily implemented

in real-world applications.

3.2.2 Background Reflection Removal. Once the system delay is

calibrated, we can apply the mixing and range FFT on the shifted

data to extract the distance information. Then we take the di�er-

ential of each chirp’s range FFT results to remove the static back-

ground re�ection. Speci�cally, we calculate the di�erence between

the current chirp-length data with the previous chirp to �lter out

the background re�ections that never change. Then we can �nd

a continuous subset of the range bins that includes all the high

energy bins as the range of interest, and apply the following feature

extraction algorithms only on those bins, which can signi�cantly

improve the computational e�ciency.

3.3 Range-Azimuth-Elevation Cube
Construction

To precisely capture features of the hands, we need to �rst localize

and segment the re�ection from each hand in the 3D space. To

achieve this, we need to extract the range, azimuth and elevation

features of the hand re�ection. A simple idea is to apply angle FFT

on the horizontal and vertical sub-array, respectively. However,

this method has two limitations: First, this method consider the

two sub-arrays as independent components and estimate the angle

information separately, even if we know the locations of all the mi-

crophones. The horizontal sub-array only extracts azimuth features

and the vertical sub-array only extracts the elevation. Therefore,

we will get a range-azimuth feature map and a range-elevation

feature map. Although we can localize and segment the hand re�ec-

tions in both feature maps, it may be hard to match the re�ections

segmented from two feature maps when there are multiple hands,

especially when the hands are in similar ranges. Second, applying

angle FFT on a 8-microphone sub-array results in an angle resolu-

tion of about 15°, which is still insu�cient to capture �ne-grained

spatial features. Thus, it is challenging to separate hands that are

in close proximity.

To address the above limitations, we propose to apply the Min-

imum Variance Distortionless Response (MVDR) beamforming

[8] on all the 16 microphones to further enhance angular reso-

lution, thereby facilitating improved segmentation of re�ections

from closely spaced hands. MVDR is an adaptive spatial �ltering

technique with the basic idea to maximize the gain in a desired

direction while minimizing interference and noise from other direc-

tions. Speci�cally, assume that we know the 3D positions of the "

microphones in our array r< =

[

G<, ~<, I<
]

,< = 1, . . . , " , then

the MVDR weights for a desired azimuth \ and elevation q can be

calculated by:

wMVDR =

R
−1
a(\, q)

a(\, q)HR−1a(\, q)
, (2)

Where R is the covariance matrix of the received signals x(C), de-

�ned as R =
1

)

∑)
C=1 x(C)x(C)

H, and � means Hermitian transpose.

The steering vector a for azimuth \ and elevation q is:

a(\, q) =
[

4 9
2c
_ r

T

1
d(\,q ) , 4 9

2c
_ r

T

2
d(\,q ) , . . . , 4 9

2c
_ r

T

"
d(\,q )

]T

, (3)

Where d(\, q) =

[

cos(\ ) cos(q), sin(\ ) cos(q), sin(q)
]

. Then the

output power of the MVDR can be computed as:

%MVDR (\, q) =
1

a(\, q)HR−1a(\, q)
, (4)

Then we apply MVDR on each range bin of the range FFT re-

sults within this frame to generate a range-azimuth-elevation cube,

which represents the re�ection energy distribution in the whole

3D space. In this cube, re�ections from multiple hands can be seg-

mented without any requirement for matching the azimuth re-

�ections and elevation re�ections. Furthermore, MVDR is a super-

resolution method that can provide higher angle resolution, thanks

to its ability to suppress interference and noise more e�ectively

than angle FFT. Thus, it’s capable of resolving signals re�ected from

closely spaced hands.

3.4 Hand Re�ection Segmentation

After we generated the range-azimuth-elevation cubes, we need to

segment the re�ection of each hand. We segment the re�ections

from the generated cubes by the following methods:

We �rst use the CFAR (Constant False Alarm Rate) algorithm

[54] to detect the range, azimuth, elevation bins with high energy,

which means there are re�ections at those locations. CFAR adjusts

the threshold of detection dynamically to maintain a constant rate

of false alarms, which enables it to handle varying noise levels

and provide stable detection results. Speci�cally, it applies a slid-

ing window to the cube to estimate the noise level, then the bins

that exhibit energy exceeding a noise threshold are preserved and

identi�ed as containing potential re�ections.

After that, we use DBSCAN [12] (Density-Based Spatial Clus-

tering of Applications with Noise) to cluster the areas with high

energy and calculate the center of each cluster. DBSCAN can iden-

tify clusters of arbitrary shapes by examining the spatial density

of data points, which is suitable to cluster the dynamic hand re-

�ections in our system. Then each cluster can be considered as the

re�ections of one hand and the center represents its location. In

case sometimes the body movements also generate clusters that are

not expected, we can �lter out the clusters that have much larger

sizes than a hand. Then we can segment a �xed-sized sub-cube

around the center of each cluster for further feature extraction and

hand pose reconstruction.
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Figure 2: Signal Processing Pipeline. We extract 3D range-

azimuth-elevation features then localize the hands and seg-

ment a sub-cube around each hand from the whole range-

azimuth-elevation cube. Then we also extract each hand’s ve-

locity features and concatenate the range-azimuth-elevation

and velocity-azimuth-elevation sub-cubes as the training

data of the hand pose reconstruction model.

3.5 Velocity-Azimuth-Elevation Cube
Construction

After the re�ection of each hand is localized and segmented, we

can start to extract the features of each hand. Except for the spatial

features including range, azimuth, elevation that we have already

extracted, velocity features are also important for precisely recon-

structing hand poses because the hand will generate speci�c veloc-

ity patterns when making di�erent hand poses. Therefore, we �rst

apply Doppler FFT on the results of the range FFT along the chirp

dimension to extract the velocity features. Then for each velocity

bin, we search in azimuth and elevation dimension and calculate

the MVDR power to build a Doppler-azimuth-elevation cube. In or-

der to reduce the computational complexity, we only apply MVDR

in the area of each sub-range-azimuth-elevation cube segmented

in Section 3.4. Finally, to combine the spatial features and the ve-

locity features, we concatenate the range-azimuth-elevation and

velocity-azimuth-elevation cubes together and feed them to the

deep learning model for hand pose reconstruction.

3.6 Data Augmentation

Training a deep learningmodel with good generalizability requires a

large amount of training data. However, collecting acoustic sensing

data is inherently complex and labor-intensive, so usually we only

have limited amount of data during training, which can result

in over�tting and the performance will severely degrade when

applied to real-world scenarios where the environment, the user

and the hand’s relative location to the microphone array are not

seen in the training dataset. Therefore, we propose a series of data

augmentation techniques designed to synthesize virtual training

data from the limited real data, which are introduced in detail below.

Add Random Noise: A straightforward method to enhance the

robustness of our trained deep learning model is to add random

noise to the recorded acoustic signals. By integrating these noise-

augmented data into the training dataset, the model is encouraged

to learn more generalized features.

Augmentation for di�erent ranges: To handle hands in un-

seen positions, we can approximately infer the virtual features in

di�erent positions from the feature cubes generated using limited

real training data. In the generated cubes, the spatial information

is represented by range, azimuth, and elevation. Considering that

objects of the same size can occupy di�erent numbers of bins in the

azimuth and the elevation dimension, we propose an augmentation

method that scales the segmented data cube in both the azimuth

and the elevation dimension to simulate the impact of di�erent

distances. Speci�cally, given a segmented data cube generated from

real data with # bins in the azimuth-elevation dimension, the dis-

tance between the hand and the microphone array is 3 , and the

distance of the virtual hand features that we want to generate

is 3′, we traverse every element in this cube and rewrite its az-

imuth/elevation index 8 as 8′ = A>D=3 ( #+1
2

+ ( 3
3 ′ ) × (8 − #+1

2
)).

If there are multiple elements assigned to the same index in the

augmented data cube, we will take the average of those values. If

there are some elements in the augmented data cube not assigned

any value, we will �ll in those gaps with linear interpolation. This

method will be applied to both the range-azimuth-elevation cube

and velocity-azimuth-elevation cubes.

Augmentation for di�erent angles:When the hands are at

di�erent angles (azimuth/elevation) relative to the microphone ar-

ray, the measured velocity patterns can vary. The reason is that only

the movement along the radial direction can cause the change of a

re�ection path length, which has been analyzed in previous works

[51, 86]. Therefore, we need to apply augmentation on the velocity

dimension of the velocity-azimuth-elevation cube to mitigate the

challenge when applying our model to scenarios where the hands

are at di�erent angles. To this end, we generate virtual features

that simulate the impact of angles from the real data collected di-

rectly in front of the microphone array. For each angle that we

want to generate augmented data, we scale the velocity dimension

by calculating the radial projection of each element in the velocity

dimension. For an element whose velocity is E , we can calculate

its projection on the new radial direction when the azimuth and

elevation angle changes to \ and q : E=4F = E2>B (q)2>B (\ ). Then

we assign the value of the element to the corresponding velocity

bin in the augmented data cube. For the empty bins, we can �ll

them with random noise.

Augmentation for inaccurate segmentation:When segment-

ing the hand re�ections from the whole range-azimuth-elevation

cube, sometimes the calculated center position can be inaccurate,

which means that the center of the segmented features can drift to a

nearby position in the data cube. To handle this problem and make

our system robust to the segmentation error, we manually shift the

position of the center around the estimated one to generate more

segmented features.

3.7 Neural Network

The design of our transformer-based neural network is shown in

Figure 3. The details are explained below:

3.7.1 Transformer Design. Originally developed for Natural Lan-

guage Processing tasks, transformers [62] have demonstrated excep-

tional performance on many other tasks, such as image processing

[11], speech recognition [26], video classi�cation [3] and wireless

sensing [74]. Since our extracted features are a series of temporal

sequences of range-velocity-angle cubes, which are similar to video

frames, we build our neural network on TimeSformer [3], which

extends the standard transformer architecture by incorporating a
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Figure 3: Neural Network Architecture.- is a training sample

that includes range/velocity-azimuth-elevation features and

is used to train the hand pose reconstruction model. -1 and

-2 are a pair of training samples randomly selected from the

training set, used as the input for the contrastive learning

module. Speci�cally, if -1 and -2 are from the same gesture

but di�erent subjects, they are considered as a positive pair.

And if they are from di�erent gestures, we consider them as

a negative pair.

space-time attention mechanism where the self-attention is cal-

culated in spatial dimension and temporal dimension alternately.

The spatial attention handles interactions within individual frames,

while the temporal attention across di�erent frames captures the

dynamics over time. To be speci�c, in the segmented range/velocity-

azimuth-elevation cube, the range/velocity dimension is considered

as channels and the azimuth-elevation dimensions are treated as

the height and width of an frame of image. The cubes will be seg-

mented into patches following the method in ViT [11] and they will

be mapped into embedding vectors z(0) . In each attention layer ; ,

we compute the query/key/value for multiple attention heads from

last layer’s representation z(;−1) then apply temporal attention and

spatial attention alternately. After that, we can obtain the output

encoding of layer ; by calculating the weighted sum of value vectors

with both the spatial and temporal attention coe�cients for each

attention head and aggregate the vectors from all heads with an

MLP. One di�erence in our model with the original TimeSformer

design is that we didn’t use a classi�cation token because we want

to predict the hand pose in each frame instead of the class label.

Therefore, we directly use a linear layer to project the �nal layer’s

output encoding of each frame to the hand pose.

However, directly predicting the 3D locations of each hand joint

independently doesn’t utilize the prior knowledge of the hand,

which can make the trained model unstable. Because the hand

joints can be considered as a tree structure with # joints according

to the connection relationship between the joints, we can make use

of the prior knowledge of the hand by estimating the rotation of

each connected hand segment instead of the location, then applying

forward kinematics [24, 63] to generate the locations of hand joints

from the root joint to the �ngertips.

Speci�cally, for joint ?8 , its 3D coordinate can be derived by:

given the location of its parent joint ??0A4=C (8 ) and the initial posi-

tion of ?8 , ??0A4=C (8 ) :

?8 = ??0A4=C (8 ) + '8 (?8
0
− ?

?0A4=C (8 )
0

), (5)

where ??0A4=C (8 ) is the location of ?8 ’s parent joint,'8 is the rotation

matrix of the joint ?8 with respect to its parent, ?8
0
and ?

?0A4=C (8 )
0

are the initial position of ?8 , ??0A4=C (8 ) , respectively. By doing this,

we encode the restriction of the hand skeleton knowledge into our

model so that the generated hand pose will be more realistic. We

integrate this process as a forward kinematic layer in our neural

network.

3.7.2 Contrastive learning module. Although we have generated

augmented data for di�erent positions and our signal processing

makes our model robust to di�erent environment and multiple

hands, di�erent subjects still have di�erent habits for hand gestures

and their hand shapes also vary. Therefore, it’s still challenging to

achieve cross-subject inference with high accuracy. To overcome

this challenge, we propose to integrate contrastive learning into our

model to make our model focus on the subject-independent features

during training. More precisely, contrastive learning aims to learn

e�ective representations by contrasting positive pairs (similar or

related samples) against negative pairs (dissimilar or unrelated

samples). In our case, we can build additional paired training data

which consists of two training samples from di�erent recorded

acoustic data. If the two samples are from di�erent subjects but the

same gesture, we de�ne them as a positive pair. If those samples are

from di�erent gestures, we de�ne them as a negative pair. During

training, our model will take both the paired data and unpaired

data as the input. The unpaired training data - will be used to

update the parameters of the whole neural network for hand pose

reconstruction, and the two samples-1 and-2 in a data pair will be

used to guide the neural network focuses on subject-independent

features. This is achieved by considering the �rst few layers of the

transformer as a feature extractor, then we feed -1 and -2 into

those layers separately and get two features �1 and �2 respectively.

We can calculate contrastive loss on �1 and �2 to guide the feature

extractor part of the model map the input acoustic data cubes into

a features space where di�erent subjects’s representations are close

to each other. This method is inspired by the siamese network [4],

which has been widely used in contrastive learning. But in our

design, the unpaired data - and paired data -1 and -2 will all be

processed by the �rst few layers in our model with shared weights.

Therefore, the representations extracted from - are not obviously

a�ected by di�erent subjects, either. Then the following layers of

the transformer will be trained on subject-independent features

which makes our model retains good performance in cross-subject

inference.

3.7.3 Loss Function. In our paper, the following loss functions are

used to train our deep learning model:

First, we use a pose loss to minimize the mean square error be-

tween the predicted 3D positions of hand joints with the ground

truth pose:

!? =

1

)

)
∑

8=1

1

#

#
∑

8=1

∥?̂8C − ?
8
C ∥2, (6)

where ?̂8C is the predicted location of the 8-th hand joint at time slot

C , and ?8C is the corresponding ground truth location, # is the total

number of hand joints de�ned in our hand skeleton model, and )

is the total number of segmented range-velocity-angle cubes.
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Then, a smooth loss is applied:

!B =
1

) − 1

)
∑

C=2

1

#

#
∑

8=1

∥(?̂8C − ?̂
8
C−1) − (?8C − ?

8
C−1)∥� , (7)

where ∥ · ∥� is the Huber norm. This loss is adopted because we

expect that the generated hand poses exhibit consistency across

consecutive time slots, which means that sudden changes for the

joint positions should be avoided. This is necessary to make the

generated poses look realistic.

The third loss function in our system is the contrastive loss:

!2 = (1 − ~) ·
1

2
(∥�1 − �2∥)

2

+ ~ ·
1

2
(max(0,< − ∥�1 − �2∥))

2 ,

(8)

In this loss function, ~ is the label of the training sample, de�ned

as 1 for a positive pair and 0 for a negative pair. �1 and �2 are the

features extracted by the �rst few layers of the transformer from

paired training data -1 and -2, respectively.

Then we can summarize the total loss ! as:

! = !? + V · !B + W · !2 , (9)

where V , and W are the hyper-parameters to adjust the weight of

smooth loss and the contrastive loss.

3.8 Root Joint Localization

The hand pose predicted by our deep learning model is each joint’s

location relative to the root joint (the wrist). However, the loca-

tion of the root joint is also important in many scenarios, such as

grabing an object and move it in a VR game. Therefore, we add

another module that predicts the 3D root joint location of each

hand. Although it’s hard to di�erentiate the wrist re�ection with

the re�ections from the other part of the hand due to the small size

of the hand, we notice that we mainly focus on the translation of

the root joint in many applications. Then we can track the location

of the strongest hand re�ections, which usually appears at the palm

and has a relatively stable o�set compared to the wrist location, as

the root joint location. Thanks to the high quality spatial features

extracted by MVDR, we can pick the elements with highest energy

in the range-azimuth-elevation cube as the root joint re�ection and

use the following geometric relations to get 3D coordinates of the

root joint: G = ' cos(\ ) cos(q),~ = ' sin(\ ) cos(q),I = ' sin(q).

After that, we use an extended Kalman �lter [53] to smooth the

root joint trajectory.

4 Experiments

4.1 Testbed

4.1.1 Microphone Array. In order to capture high quality acoustic

signals and extract range, velocity, azimuth and elevation informa-

tion, we design a microphone array with 16 microphones and one

speaker as our testbed. As introduced in Section 3.1, the angle reso-

lution is restricted by the number of microphones, which should

be considered when designing the testbed. Although we are using

a super-resolution method, MVDR, to estimate the angle, the angle

estimation will be more accurate as the number of microphones in

the array increases. Due to the fact that precisely reconstructing

the hand poses requires 3D spatial information, we need to have

Speaker

Microphones

(a) front

Ultra96 V2

Bela

(b) back

Microphone 

Array

Leap Motion

(c) Experiment Setup

Figure 4: Testbed Setup

high accuracy in both azimuth and elevation. Therefore, we design

an L-shaped microphone array consisting of 2 linear sub-arrays

that are perpendicular to each other, as shown in Figure 4a. The

horizontal sub-array is used for estimating the azimuth and the

vertical sub-array is for the elevation. In each sub-array, there are 8

microphones [61] with 8.5mm (half wavelength for 20 kHz acoustic

signal) spacing between adjacent microphones. The number of mi-

crophones for both azimuth and elevation estimation is larger than

the mainstream commercial microphone array such as MiniDSP

[43] and ReSpeaker [59], and maintains a balance in terms of data

throughput. To transmit the acoustic FMCW signal, a speaker is

placed at the intersection of the two sub-arrays.

We use a Ultra96-V2 [1] FPGA to control the 16 microphones to

record acoustic signals simultaneously. However, Ultra96-V2 board

doesn’t have an audio processing circuit so the quality of the output

signal will be limited if we use it to control the speaker playing

audio signals. Therefore, we connect the speaker to a Bela platform

[2], which is designed for high-performance audio processing, to

play the acoustic signal. To synchronize the speaker and the micro-

phones, we can add a control logic between the Ultra96-V2 board

and the Bela board by sending a control signal from Ultra96v2 board

to Bela when the microphones start recording. Once received this

signal, the speaker will start playing the signal. Due to the low

latency of both boards, we can make sure that the system delay

can be calibrated well using the method in Section 3.2.1. All the

aforementioned components are placed on a PCB (printed circuit

board) as shown in Figure 4a and 4b. It is worth noting that although

our system is implemented on a L-shape array for a better angular

resolution, it can also be deployed to any other commercialized

microphone arrays, because the MVDR-based 3D spatial feature

extraction pipeline in our paper can be applied to any microphone

arrays as long as we know the location of each microphone. We also

conduct experiments to demonstrate our system can still achieve

high performance with less number of microphones in Section

4.4.3, which shows that the proposed method is compatible with

commercial microphone array.

4.1.2 Leap Motion Controller. We use a Leap Motion Controller

(LMC) to collect the ground truth of the 3D hand poses. The LMC

is equipped with two Infrared Light (IR) cameras and three IR

emitters to obtain the precise 3D locations of each joint of the

hands in Cartesian space. According to [72], the LMC can estimate

the position of hand joints with errors less than 1.2 mm. During

the experiments, we connect it to a laptop and obtain the ground

truth poses through the o�cial Application Programming Interface

(API) of LMC. The sampling rate is set to 100 Hz.
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Ground Truth

Predicted

Photo

clench flip palm horizontal swing bend fingers close fingers pinch index

Ground Truth

Predicted

Photo

pinch middle pinch ring pinch pinky rocker point victory

Figure 5: Hand Gestures Visualization.

4.2 Data Collection and Prepossessing

We recruited 8 volunteers as human subjects in our experiments.We

designed 12 hand gestures to evaluate the hand pose reconstruction

performance of our RAM-Hand system, including: clench, �ip palm,

horizontal swing, bend �ngers, close �ngers, pinch index, pinch

middle, pinch ring, pinch pinky, rocker, point, and victory. The hand

gestures are visualized in Figure 5. Each subject was requested to

perform every hand gesture for 60 seconds with their right and

left hands, respectively. They also provide 60 seconds of random

hand gesture combination data. We collected the subjects’ data in

3 rooms, 4 di�erent distances and 7 di�erent angles (azimuth or

elevation) to evaluate the robustness of our system. To prove that

the proposed system can handle multiple simultaneous existing

hands even if there is single-hand data in the training set, we also

asked the subjects to perform each gesture for an additional 60

seconds with their left hands and both hands, respectively. All the

experiments have been proved by our institution’s IRB. The setting

of the data collection is shown in Figure 4c. The microphone array

is �xed by a stand on a table to play and record acoustic signals,

and a leap motion controller is placed under the subjects’ hands to

collect the ground truth of the hand poses. The transmitted FMCW

signal has a frequency rate of 16 − 22 kHz and a sampling rate

of 44.1 kHz. The length of a single chirp is 20 ms and there is no

gap between adjacent chirps. The frame rate of the ground truth

collection is set to 100 Hz but down-sampled to 10 Hz later.

We �rst calibrate the system delay as mentioned in Section 3.2.1,

which can be done automatically using the �rst few chirps within

tens of milliseconds. Then we dechirp the transmitted signal and

the received signal by multiplying them together and applying a

range FFT to extract the range features. After that, we calculate

the di�erence between the range FFT results of adjacent chirps to

remove the static background re�ections. Because the chirp length

is 20 ms, we have 3000 chirps in a 60-second recording. We then

apply MVDR on each range bin of the range FFT results to construct

the range-azimuth-elevation cube, with the search scope from 40°

to 140° for azimuth and from −50° to 50° for elevation. The search

step is set to 2° to balance the accuracy and the computational cost,

which results in 51 bins in both azimuth and elevation dimensions.

To segment the re�ections of each hand from the cubes, we �rst

apply the CFAR algorithm to the range-azimuth-elevation cube to

detect the elements with high energy as the positions where there

are re�ections. We can use a threshold to further �lter out points

with low energy after CFAR. Then we use DBSCAN to cluster those

detected points into clusters to distinguish di�erent hands. The eps

value is set to 2, and the minimum number of points is set to 10.

In each frame, we �lter out the clusters unlikely to be a hand by

checking their sizes and then extract a sub-cube around each cluster

center with a �xed size from the cube. The size of the segmented

cube is set to (7, 7, 7) in range, azimuth, and elevation dimensions,

respectively.

We then apply Doppler FFT on the range FFT results with mo-

tions to extract the velocity features. The window size for one

Doppler FFT is set to 25 chirps and the step size is 5. Therefore, the

generated range-Doppler pro�les has a frame rate of 10Hz. We con-

struct a Doppler-azimuth-elevation cube by applying MVDR on the

Doppler FFT result and set the search scope to (�0 −12°,�0 +12°) in

azimuth dimension and (�4 − 12°,�4 + 12°) in the elevation dimen-

sion, where �0 and �4 are the azimuth and elevation of the hand

re�ection’s center obtained in the segmentation process. Due to the

small search scope, we can use a �ner-grained search step value, 1°,

in this step, which creates a Doppler-azimuth-elevation cube with

shape (25, 25, 25) for each hand. After that, we can regenerate the

range-azimuth-elevation cube for each hand using the same search

scope and step and concatenate both cube in the range/velocity

dimension as the feature fed into the deep learning model for hand

pose reconstruction.

We propose a series of data augmentation methods to generate

virtual training samples from the real collected training data, as

introduced in Section 3.6. We add random noise with SNR 103�,

153�, 203�, 253� and 303�, respectively, which generates 5× virtual

data. In addition, augmented data for distance in 30 cm, 70 cm, 90

cm, 110 cm, 130 cm, and 150 cm, is generated from the data collected

in 50 cm and results in 6× more data. We creates virtual features

for azimuth within the scope (45°, 135°) and the scope for elevation

is (−45°, 45°). The step is set to 15°, so there is 36× virtual data.

Finally, we will shift the location of each hand with o�set (−1, 1)

bins in range, azimuth and elevation dimension, which generates

26× augmented data. Overall, the data augmentation can provide

over 70× virtual data.

4.3 Model Setting and Model Training

We build our transformer model with the space-time attention

layers proposed in [3]. In each layer, we take a sequence with 16

frames of segmented cubes as the input, and the patch size is set to

5, the number of attention heads is 10, the dropout rate for attention

computation is 0.15 and the activation function is Softmax. We have

12 attention layers in total and the �rst 4 layers are also trained with

contrastive loss to extract subject-independent features. The weight

hyper-parameters V , W in the loss function are both set to 0.1, and

we use an Adam optimizer with learning rate 0.0001 to update the

parameters of our model. The batch size is set to 32. For the training

data in each recording session, the input cubes are segmented into

�xed-length sequences using a overlapped sliding windows with

size 16 and step 1 as the �nal input of the neural network. For

the testing data with an arbitrary length of cube sequence, we can

segment it into non-overlapped windows with length 16 during

inference. The neural network is implemented in Pytorch [48].

4.4 Experiment Results

To comprehensively evaluate the performance of our proposed

system, we conduct extensive experiments in di�erent scenarios
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Figure 6: Examples of the Reconstructed Hand Poses in Un-

seen Location.

and compare the performance with the baseline method. We �rst

evaluate the hand pose reconstruction accuracy in the basic scenario

where the testing data is collected in the same setting as the training

data. Then we show that our system is robust to testing scenarios

where the hand positions, environments, subjects, and number

of hands are new and not seen in the training set. We conduct

additional experiments to measure the root joint tracking accuracy.

We also evaluate the running time of our system in this section.

4.4.1 Baseline. We choose Beyond-Voice [36] as the baseline

method. It extracts range pro�les by calculating the cross-

correlation between the transmitted and received signal, then feed

those features into a CNN-LSTM model to reconstruct the hand

poses. We implement it on our dataset and compare its performance

with our system in the following experiments.

4.4.2 Metrics. Since we are using a learning-based method to re-

construct the hand pose and a physical model to localize the root

joint, we measure their performance separately. For hand pose re-

construction, we �rst align the root joint in the predicted hand pose

and the ground truth, then use the Average Joint Localization

Error, which is de�ned as the average Euclidean distance between

the 3D locations of each hand joint of the predicted hand poses

and the ground truths as the quantitative metric. For root joint

localization, we only measure the Euclidean distance between the

predicted root joint location with the ground truth.

4.4.3 Basic Scenario. We de�ne the setting of our basic scenario

as: following the description in Section 4.2, the subjects perform

each of the 12 hand gestures with their right hands and left hands,

respectively in a conference room. The distance between the hands

and the microphone array is set to 50 cm and the azimuth and the

elevation angle of the hands relative to the array are both 0 degree.

For each subject and each gesture, 80% (the �rst 48 seconds) of the

data are used for training and the remaining 20% of the data are

used for testing.

In the basic scenario, the average joint localization error is 10.71

mm, which is low enough to accurately capture the hand poses. We

also plot the predicted hand poses and the corresponding ground

truth poses in Figure 5 as qualitative results. In this �gure, we can

see that the reconstructed poses looks very similar to the ground

Table 1: Sensitivity Analysis Results

Parameter Value Result (mm)

MVDR Step Size
1 10.71
2 12.04
3 12.91

Transformer Layer Number

8 11.47
9 11.13
10 10.84
11 10.69
12 10.71

Microphone Number

10 12.77
12 12.39
14 11.85
16 10.71

truth for all the gestures. We also evaluate the accuracy of the model

trained with 12 gestures’ data on the random gesture combination

data, which gives an error of 17.25mm. Note that we didn’t include

any data from the random combination session in the training set,

so the degradation in performance is very slight for this setting. As

a comparison, the results of the baseline method, Beyond-Voice, in

the above two experiments are 16.2mm and 21.72mm, respectively.

Our proposed method has better performance because we extract

extensive features including range, azimuth, elevation and velocity

while Beyond-Voice utilizes only the range information.

Sensitivity Analysis: We analyze if our proposed system is

sensitive to di�erent parameters and hardware con�guration, such

as the searching step size of MVDR, the number of layers of the

transformer model, and the number of microphones. The results

are shown in Table 1.

For the MVDR searching step, we directly use the sub-cube

segmented from spatial features generated with step size 2° and 3°

to train our model, and compare the results with the default step

size, 1°. The joint localization error only increases slightly from

10.71 mm to 12.91, even if we use 3° as the step size. Thus, our

method can work well with varying MVDR searching step sizes.

We also evaluate whether our deep learning model is sensitive

to the number of transformer layers. During the experiments, we

�x the number of layers used for contrastive learning as 4, but

use less subsequent layers to change the total layer number. The

results show that the accuracy remains high even if we only use 8

transformer layers, which means that our method has the potential

to further reduce the required computational resources.

Finally, considering that there are many commercial microphone

arrays with di�erent number of microphones, we conduct exper-

iments to test if our method is sensitive to di�erent microphone

numbers, by applying MVDR on data from only part of the micro-

phones. Due to the L-shaped design of our testbed, we measure the

results of using 5, 6, and 7 microphones in each sub-array, so the

total numbers of microphones are 10, 12, and 14. From the results

shown in Table 1, our method maintains excellent performance

even the number of microphones reduces to 10. Thence, our pro-

posed system also has the potential to be implemented on other

commercial microphone arrays.

Based on the above sensitivity analysis, we can conclude that our

method maintains high performance in a broad parameter range

and di�erent hardware settings, which improves its practicality in

di�erent real-world scenarios.
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Training:Left Training:Right Inference:Both Predicted

(a) Two Hands

Training: Single Hand Inference: Four Hands Predicted

(b) Four Hands

Figure 7: Example of Multi-Hand Pose Reconstruction

4.4.4 Multi-Hand Pose Reconstruction. When there are multiple

hands performing gestures at the same time, our system can also

work well even there is only single-hand data in the training set

because it can segment re�ections from each hand. We conduct

experiments to demonstrate our system’s e�ectiveness to handle

multiple hands.

We collect 12 sessions of data from each subject, and the subjects

are asked to make gestures with both hands for 60 seconds in each

session. Their left hands and right hands can perform the same

gestures or di�erent gestures. The two hands are separated about

30° in azimuth angle (the distance is about 25 cm) to avoid mutual

occlusion. Then we train our model with data collected when the

subjects are using a single left hand and a single right hand only.

We evaluate the accuracy of this model on the two-hands data. The

result shows that accuracy of our system can achieve 19.48 mm for

the right hands and 20.83 mm for the left hands. An example of the

qualitative result is shown in Figure 7a.

To evaluate the minimum required hand separation distance, the

subjects use both hands to perform gestures with varying hand

separation distances. We plot the features after segmentation in

Figure 8. The hand separation distance is de�ned as the distance

between the centers of the two palms. We can see that even when

the hands are as close as 15 cm, their features can still be segmented

into di�erent clusters well.

We also conduct experiments to evaluate the hand reconstruc-

tion performance when there are more hands, which involves the

second subject. We ask two subjects to sit in front of the micro-

phone array and perform hand gestures with their hands and make

sure that every two hands are at least 20 cm away from each other.

The average accuracies for each hand are 23.01 mm, 21.56 mm, and

24.26 mm in the three-hands scenario, from left to right. In the

four-hands scenario, the accuracies are 22.81 mm, 21.62 mm, 25.42

mm, and 28.37 mm. And it’s visualized in Figure 7b. According to

those results, we can conclude that when there are more hands, the

average accuracy drops slightly due to the stronger interference

between those hands, but the performance is still acceptable. Al-

though our current method can’t handle the occluded hands, the

users’ hands are usually occluded when two hands are crossing

in real-world scenarios, which only causes short-time occlusion.
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Figure 8: Hand Separation at Di�erent Distances.

Therefore, it’s possible to leverage information from both preceding

and subsequent frames to infer the occluded hand poses.

From the above experimental results, we can say that our system

can work well when there are multiple hands at the same time,

which can’t be achieved by the existing wireless-based hand pose

reconstruction approaches.

4.4.5 Robustness Analysis. In this section, we prove the robustness

of our model when applied to new scenarios not seen in the training

dataset. The impact of di�erent distances, di�erent angles, di�erent

environments, di�erent subjects and multiple simultaneous exist-

ing hands are further evaluated in the following experiments. In

all these experiments, the training data used for our model is col-

lected in the basic scenario with 50 cm distance, 90° azimuth, and 0°

elevation, then augmented by the methods described in Section 3.6.

Robustness to Di�erent Distances To evaluate if our model

can keep good performance when the hands are in distances not

seen in the training dataset, we conduct experiments that apply

the model trained with 50 cm data to the acoustic data collected

in the distances 25 cm, 100 cm, and 150 cm, respectively. In those

experiments, the azimuth and elevation angle are �xed to 0 degree

to only analyze the impact of di�erent distances. The results are

shown in Figure 9a. We can see that when the distance changes to

25 cm and 100 cm, the accuracy is still lower than 20 mm, which

is a satisfying result considering that we never use any training

data collected from those distances. When the distance increases

to 150 cm, the performance degrades to 30.08 mm, due to the fast

attenuation of the acoustic signal. However, the current results

already support the users to interact with their smart devices in

a large area, and our method is better than the baseline, Beyond-

Voice [36], in all the distances. The �rst column of �gures in Figure

6 shows the reconstructed hand pose when the inference is on

data collected at 100 cm. We can see that the pose reconstructed

by our system looks very similar to the ground truth while the

baseline method fails in this case. To evaluate how e�ective the

data augmentation methods are, we also report the results when

our model is trained without any augmented data in the same �gure.

The average errors increase obviously in all the distances that are

not in the training set.

Robustness to Di�erent Azimuth/Elevation We also assess

the impact of angles not seen during training to the performance of

our model.We collected additional data when the azimuth/elevation

angle between the hands and the microphone array are 105°/15°,

120°/30°, 135°/45° while keeping the distance as 50 cm, which pro-

vides data at 6 new locations. The results are shown in Figure 9b

and 9c. As the azimuth/elevation between the hand and the mi-

crophone array increases, the error increases slightly due to the

imperfection of the augmentation. However, the results are still
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Figure 9: Impacts of di�erent factors on average joint localization errors (mm).
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Figure 10: Di�erent Environments.

acceptable and using augmented data will signi�cantly improve the

performance when the hands are in new angles. Considering that

the users usually interact with their smart devices within restricted

angles, our system can still work well when the users are changing

their positions. The second column of Figure 6 shows the results

on data collected at 120° azimuth and the third column shows the

results on 30° elevation’s data.

Robustness to Di�erent Environments In order to prove

that the performance of our RAM-Hand system is not a�ected

when applied to environments that are not in the training set, we

conduct experiments in other two rooms shown in Figure 10b and

10c using the model trained in room 1 (Figure10a). We also keep

the distance as 50 cm and the angles as 0 degree. The average joint

localization errors in room 2 and room 3 are 17.42 mm and 19.65

mm, respectively. Therefore, we can conclude that the proposed

system is robust to the environment change because its accuracy

doesn’t decrease much when applied to new environments.

Robustness to Di�erent Subjects We conduct leave-one-user-

out experiments to evaluate our system’s generalization ability to

new users. Speci�cally, our model is trained with the data collected

from seven subjects then tested on the other subject. We test each of

the subjects in turn with and without using contrastive learning in

our model to test if this design helps cross-subject inference. From

the results shown in Figure 9d, we can see that there is a signi�cant

improvement on the performance when contrastive learning is

applied, which reduces the average leave-one-user-out result from

30.23mm to 26.19mm, and it also has a better performance than the

baseline method. Therefore, our RAM-Hand system also behaves

well when applied to new users’ data, which greatly simpli�es the

training procedure as it won’t need to �ne-tune for every new user.

Robustness in Real-world Scenario Finally, we consider a

scenario where the subjects can move their hands freely in 3D

space while performing hand gestures. That means the distance,

azimuth and elevation of the hand can change randomly at the

same time, which is very similar to the real-world scenario. There

is no occlusion between the subjects’ hands and the microphone

array. We also collect 60 seconds data for each of the 12 gestures

and evaluate the performance of the model trained only using

data collected in the basic scenario and tested on data collected in

this scenario. During the data collection, we also played randomly

selected YouTube videos as background music to simulate the noise

in daily environments. In addition, there is another person in the

same room acting as an interferer, who randomly walks around

at least one meter away from the subject in the same room. In the

meanwhile, the interferer can also talk to make some noise. Our

system achieves an accuracy of 24.91mm in the real-world scenario,

while the accuracy of the baseline method, Beyond-Voice, is 30.39

mm. Thus, we can conclude that our proposed method can still

behave well in the real-world scenario where the distance, azimuth

and elevation of the hand vary simultaneously.

4.4.6 Root Joint Localization. The previous experiments focus on

measuring the hand pose reconstruction accuracy, but the location

of the whole hand, or the root joint, is also important in many

applications. Therefore, we ask the subjects to move their right

hands freely in the 3D space for 120 seconds, while performing

random hand gestures. We also conduct experiments where the

subjects use both hands to draw random shapes to show that our

method can localize multiple hands simultaneously. Because the

predicted hand location is in the microphone array’s coordinate

system while the leap motion’s coordinate system, we calibrate

the two coordinate systems before the experiments by �rst let the

subject draw a circle then aligning the center of the of the predicted

circle and the ground truth circle. The accuracy of single-hand

localization achieves 29.3 mm in the 3D space and the accuracy

of two-hands localization is 29.58 mm for the left hand and 28.42

mm for the right hand. The qualitative results for both single-hand

and two-hand trajectories are visualized in Figure 11. From the

above results, we can conclude that our system is able to precisely

localize the root joint location of the hands. Without using the

extended Kalman �lter, the single-hand localization accuracy is

36.45 mm, and the two-hands localization accuracies are 37.41 mm

and 36.82 mm for left hand and right hand, respectively. Those

results demonstrate that using the extended Kalman �lter is helpful

to improve the root joint localization accuracy.

4.4.7 Running Time Analysis. We evaluate the running time of our

proposed system to show its practicality in real-world applications.

We implement both the signal processing and the deep learning

using Pytorch on a server with NVIDIA A6000 GPU. The results

show that the average time required to extract features from one

frame of data (0.1 seconds) is 51.5 ms and the inference time of

the deep learning model for one frame feature is 1.96 ms. Thus,

the proposed system could achieve a frame rate around 18.7 fps,

which can support real-time interaction between the user and smart

devices.
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Figure 11: Root Joint Localization Results.

5 Related Work

Acoustic Sensing Nowadays, leveraging acoustic signals to sense

the surrounding objects, especially human activities has succeeded

in many applications, such as gesture recognition [18, 25, 35, 49,

55, 60, 66, 70, 77], device tracking [6, 17, 39, 65, 82], hand tracking

[34, 37, 41, 45, 69, 83], facial expression recognition [13, 75] and

imaging [40, 67]. However, the above systems can only predict a

label of the gesture, track the hand as a single point, or image a

very coarse 2D shape, while our system can precisely estimate the

3D locations of each hand joint.

Acoustic signal has also been used in pose estimation. EchoWrist

[31] can estimate hand poses using acoustic signals transmitted

by a wristband. However, it only works for the hand wearing the

wristband, whereas our system can support device-free pose recon-

struction for multiple hands. SonicHand [68] builds a hand pose

reconstruction system on a smartphone. But it can’t handle the

hand in unseen locations or multiple hands, due to the poor sensing

ability of the smartphone. The existing work that is most similar to

our system is Beyond-Voice [36], which also reconstructs hand pose

using a microphone array. However, they can only estimate the

pose of one hand while our system has the ability to handle multiple

simultaneous existing hands when the model is only trained with

one hand’s data, due to the design of segmenting each hand’s re-

�ection in the extracted features. And Beyond-Voice only takes the

range information as features, so the range-velocity-angle features

used in our system can provide more comprehensive information

and enhance the robustness. To the best of our knowledge, our

RAM-Hand system is the �rst system that can reconstruct poses of

multiple hands using wireless signals only.

RF Signal-based Pose Reconstruction Recently, many re-

searchers have spent their e�orts on using RF signals for human

pose reconstruction, instead of focusing solely on traditional ges-

ture/activity recognition tasks [7, 10, 23, 74]. Those systems are

built on specialized hardware [84, 85], Wi-Fi [24, 52, 71, 81] and

mmWave Radar [30, 78–80]. However, all the above systems can

only reconstruct the coarse-grained human pose. With the help of

our customized signal processing pipeline and transformer model,

our RAM-Hand system is able to precisely reconstruct the �ne-

grained hand poses and won’t su�er from obvious performance

degradation when applied to new scenarios. [22] utilizes Wi-Fi for

hand pose reconstruction, but it has a limited accuracy and can’t

handle multiple hands due to the low resolution of Wi-Fi. The au-

thors of mm4Arm [38] propose to sense the vibration of the user’s

forearm using a mmWave Radar and then reconstruct the hand

pose indirectly. However, it requires the radar to face the user’s

forearm, which is unrealistic in practical use. MmHand [29] can

directly sense the hand and reconstruct the pose with a mmWave

Radar. Nonetheless, it can’t handle multiple hands and has poor

resolution in the elevation dimension due to the hardware design,

which limits its performance. Our system enables the users to re-

construct poses of multiple hands in a large area without obvious

performance degradation, which can be used in a broader range of

applications.

Vision-based Hand Pose Reconstruction Reconstructing

hand poses is a well-studied problem in the computer vision area.

Either depth camera [14, 15, 27, 47, 50, 64, 76] and RGB camera

[5, 16, 44, 56–58, 88] can be used to reconstruct accurate hand

poses. Nonetheless, the vision-based methods require good light-

ning conditions and are vulnerable to occlusion. Recording videos

may also raise privacy concerns, which narrows the usage scenarios

of vision-based methods. Because our RAM-Hand system only uses

acoustic signals, it can address all the above issues while maintain-

ing good performance. Therefore, our RAM-Hand system will be a

good complement to the vision-based approaches.

Wearable Device-based Hand Pose Reconstruction To pre-

cisely reconstruct the hand poses, wearing some devices equipped

with sensors on the users’ hands is another popular research area.

Existing approaches can be classi�ed into glove-based methods

[9, 19, 32, 42, 46], ring-based methods [87] and wrist-mounted

sensor-based methods [20, 28, 31, 73]. Nevertheless, all the above

methods may make the users feel troublesome, as they all require

the users to wear additional devices on their hands. They also have

the limitation that only the pose of the hand wearing the devices

can be reconstructed. Therefore, as a device-free solution that sup-

ports multiple hands, our RAM-Hand system can be used in a wider

range of applications and o�er improved user-friendliness.

6 Conclusion

In this paper, we propose an acoustic multi-hand pose reconstruc-

tion system, RAM-Hand, which is able to precisely predict the

3D location of every joint of multiple hands and stay robust in

new scenarios where the hand positions, environments, and sub-

jects are not seen in the training dataset. To this end, we design a

customized signal processing pipeline to extract the range, angle,

velocity features and segment the re�ections of each hand, then we

use a transformer-based neural network to reconstruct the hand

poses. To address the challenge that it’s hard to train a model with

good generalizability using limited data, we propose a series of

data augmentation methods to generate virtual training samples

from the real collected data. To further enhance the robustness for

cross-subject inference, we utilize contrastive learning to guide

our model to only focus on the features independent of di�erent

subjects. We implement our system on a microphone array and

conduct extensive experiments to demonstrate the e�ectiveness

and robustness of our model.
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