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Abstract

Respiration waveforms are increasingly recognized as important
biomarkers, offering insights beyond simple respiration rates, such
as detecting breathing irregularities for disease diagnosis. Previous
works in wireless respiration monitoring have primarily focused on
estimating respiration rate, where the breath waveforms are often
generated as a by-product. As a result, issues such as waveform
deformation and phase inversion have largely been overlooked,
reducing the signal’s utility for applications requiring breathing
waveforms. To address this problem, we present a novel approach,
MobiVital, that improves the quality of respiration waveforms ob-
tained from ultra-wideband (UWB) radar data. MobiVital combines
a self-supervised autoregressive model for breathing waveform
extraction with a biology-informed algorithm to detect and correct
waveform inversions. To encourage reproducible research efforts
for developing wireless vital signal monitoring systems, we also
release a 12-person, 24-hour UWB radar vital signal dataset, with
time-synchronized ground truth obtained from wearable sensors.
Our results show that the respiration waveforms produced by our
system exhibit a 7-34% increase in fidelity to the ground truth com-
pared to the baselines and can benefit downstream tasks such as
respiration rate estimation.
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1 Introduction

Motivation. Respiration is a vital biomarker for assessing health,
diagnosing diseases, and monitoring physical exertion. Beyond
respiration rate, respiration waveform captures chest movement
patterns, offering deeper insights into breath depth, rhythm, and
variability [3]. Irregularities in the waveform can signal conditions
like sleep apnea, COPD, or Parkinson’s disease. Additionally, respi-
ration waveform analysis aids athletic training, diet monitoring, and
rehabilitation by ensuring adherence to prescribed breathing exer-
cises [6]. Wearable chestbands provide accurate breath waveform
readings by directly measuring chest expansion, but they can cause
discomfort and restrict movement. Contactless methods offer a non-
invasive alternative leveraging advancements in wireless sensing
technologies such as acoustics, Wi-Fi, nmWave, RFID, and IR-UWB
radar. In this work, we focus on IR-UWB radar for its low power
consumption, high resolution (detecting subtle vibrations), and
ranging capability (distinguishing multiple subjects by distance).
Current Solution. An IR-UWB respiration sensing system follows
three steps: (1) Preprocessing. Complex-valued UWB data are con-
verted to real values using magnitude and phase calculations [13],
with background removal filters applied to remove clutters from
static objects. (2) Waveform Extraction. UWB radar produces two-
dimensional radar matrices, one axis corresponds to object range
(distance) and the other corresponds to time. The system needs
to detect the distance of the human subject and slice the matrix
on the range axis to extract a waveform as the respiration mea-
surement. For target ranging, existing works explore algorithms
such as signal power variance [11], autocorrelation [7], and con-
stant false alarm rate (CFAR) detection [13]. (3) Application-specific
processing. Filtering [2], mode decomposition algorithms [13], or
wavelet analysis [1] are combined with spectrum analysis to extract
respiration rates. Literature also reported the usage of end-to-end
deep-learning models in this stage [10].

Problem. With a focus on estimating the respiration rate, existing
works often produce respiration waveform as a by-product. De-
spite the importance of respiration waveform monitoring, breath
waveform morphology issues, i.e., distortion and inversion, are often
overlooked, as they have a limited impact on respiration rate estima-
tion. In Figure 1, we showcase these common signal quality issues
in the breath waveform. We attribute these issues to suboptimal
waveform extraction: human respiration typically affects a range
of more than 50cm in the UWB data matrix, which produces many
possible candidate time series. The time series selected based on
the target distance estimation is often suboptimal. To demonstrate
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the pervasiveness of this issue, we conduct a simple experiment by
selecting the UWB time series with the largest standard deviation.
Among the 1874 selected time series, 541 (28.8%) suffer from dis-
tortion (correlation with ground truth < 0.5), and 521 (27.8%) are
inverted (correlation with ground truth < -0.5). Through dataset
collection and analysis, we discovered that a better candidate time
series is often available from the same UWB data matrix. If ground
truth were available, selecting the best, non-inverted waveform
would be straightforward. Leveraging the ground truth, inverted
sequences can be fully excluded, and the ratio of low-quality sig-
nals being selected drops to 2.4% (24/1874). However, the ground
truth respiration waveform is apparently not available during the
deployment of such a system. Thus, the challenge lies in predicting
signal quality and detecting inversion without ground truth.

Proposed Method. We introduce MobiVital, which includes: (1)
a signal quality predictor to select the best time series and reduce
distortion, and (2) a time series inversion detector, both operates
without ground truth. For signal quality estimation, we propose
a self-supervised procedure inspired by a pioneer work [9]. This
procedure leverages the generalization limits of machine learn-
ing models, which are known to perform well on in-distribution
data but poorly on out-of-distribution data. Thus, we train an au-
toregressive model (using a chuck of the time series to predict its
near future) with high-quality respiration data. During deployment,
candidate time series are fed into this model: high-quality signals
should yield accurate autoregressive predictions, while poor-quality
signals generate a high prediction loss. This approach provides a
self-supervised quality measure without requiring labels. For in-
version, we design a lightweight algorithm based on respiration
biomechanics [5]. The intuition is that inhalation requires active
muscle effort, leading to a chest cavity expansion duration typically
below 50% in a breathing cycle. Our pipeline detects inversion by
analyzing chest movement patterns from the UWB signal.

We comprehensively evaluate our proposed method, demonstrat-
ing that the autoregressive model effectively predicts signal quality.
The selected time series shows higher correlation with ground truth
compared to baselines and improves respiration rate estimation
accuracy. An ablation study further validates the effectiveness of
our phase inversion detector.

Developing wireless vital signal monitoring systems often re-
quires complex signal processing pipelines or deep neural networks,
necessitating high-quality datasets. However, such datasets are
rarely open-sourced. To promote reproducibility, we release a 24-
hour IRB-approved dataset! from 12 subjects, featuring IR-UWB
radar-based vital signal sensing with synchronized wearable sensor
ground truth. The code repository of this work is also publicly avail-
able?. Limited by the length of this paper, we have to omit some
theoretical analysis, implementation details, and additional results.
We place them in this technical report [8] for interested readers.

The major contributions of this paper are summarized below:

e A 12-person, 24-hour open-source dataset for respiration moni-
toring using UWB radar.

o A self-supervised autoregressive model to predict radar-measured
respiration quality with no knowledge of the ground truth.

ILink to the full MobiVital dataset: https://zenodo.org/records/15022885.
2Link to the code repository of this paper: https://github.com/nesl/mobivital-public.
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Figure 1: Example of good, distorted, and inverted UWB mea-

surements.
o A bio-informed lightweight algorithm to detect if a respiration
signal is inverted.

2 MobiVital Dataset

We first introduce the MobiVital dataset, detailing the data collec-
tion platform, protocol, and key statistics.

In our experiments, we configure the SLMX4 UWB radar to send
probing pulse at 50 Hz, covering a range of 0.3-6.3 meters with
a spatial resolution of 5cm, dividing the space into 120 bins. The
resulting radar data is D,,,,j, € C120%5% where ¢ is time in seconds.
The radar connects to a Raspberry Pi via SPI, which also controls
an inertial measurement unit (IMU) via I2C. The IMU samples at
100Hz, generating Dy, € R6%10% where three axes capture linear
acceleration and three record rotational movement. The Raspberry
Pi, radar, and IMU are mounted on a cheeseplate (Figure 3), which
can be tripod-mounted or handheld.

For ground truth respiration waveforms, we use the NeuLog
NUL-236 respiration belt sensor, widely adopted in related works.
The belt detects chest movement via air pressure changes con-
verted into electronic signals. Additionally, our dataset includes
heart rate and blood pulse waveforms from the NeuLog NUL-208,
a plethysmograph-based finger clip sensor. Both NeuLog sensors
SPI

[ UWB Radar (SLMX4)
[ MU (MPU-9265)

Mobile Platform
(Raspberry Pi)

Data TimeSync
Transport (PJP)

Control
Respiration Belt (NUL-236) on| 0

Static Platform ]

W|F|/USB¢Streamer ﬁ[ (Windows Laptop)
A

Blood Pulse Clip (NUL-208)

Collection Commands

Figure 3: Mobile platform hardware of MobiVital: (a) back-
side. (b) front-side.
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Volunteer A B C D E F G H I J K L
Duration/mins | o <\ 795 | 107.0 | 104.0 | 640 | 55.0 | 68.0 | 715 | 760 | 64.0 | 76.0 | 595
(Tripod)
Duration/mins | o, o\ o7 | 1070 | 985 | 32.0 | 28.0 | 32.0 | 27.0 | 320 | 360 | 320 | -
(Handheld)

Table 1: Dataset Statistics.

oy <. , \
Figure 4: Experiment scenarios: (a) tripod, (b) handheld.
operate at 50Hz, producing Dpeqry € R and Dy,eqrp, € RV
These sensors connect to a NeuLog USB streaming unit, controlled
via an HTTP API on a Windows laptop.

Time synchronization between the Windows laptop and Rasp-
berry Pi is achieved using Precision Time Protocol (PTP), with
the Raspberry Pi as the server (Figure 2). During data collection,
control scripts on the laptop start all sensors simultaneously. Each
session lasts approximately five minutes, divided into 30-second
sub-sessions due to buffer constraints. All data is timestamped,
transferred to the laptop, resampled to 50Hz using a low-pass anti-
aliasing filter followed by decimation, and aligned based on times-
tamp proximity, using the UWB radar timestamps as the reference.

Now, we provide details about our data collection protocol. Our
study is IRB-approved (UCLA IRB#23-000754). We recruited 12 par-
ticipants for our study. During data collection, participants were
instructed to sit on a chair 1.5 meters away from the sensor and
breathe normally. They were advised to relax, avoid controlling
their breath, and refrain from body movements for about 20 minutes
while data was collected. Participants could watch videos, listen
to music, or meditate. A researcher assisted in fitting the wearable
sensors: a heart rate and pulse sensor clipped to the left-hand pinky
finger, and a respiration monitor belt secured around the lower ribs
and diaphragm, inflated to a comfortable fit.

The experiment platform was placed on a tripod with the UWB
radar facing the subject’s chest, as shown in Figure 4(a). Recent re-
search has highlighted challenges posed by relative motion between
the sensor and the subject [12]. To address this, we also include
a handheld case where a researcher holds the sensing platform,
blending involuntary hand motion into the data (see Figure 4(b)).
While not the primary focus of this paper, we will release this part
of the data alongside the tripod data. Dataset statistics are shown
in Table 1. In total, we collected 937 minutes of tripod data from
12 subjects and 546 minutes of handheld data from 11 subjects,
ensuring diversity across users and different respiration patterns
on various days.

3 System Design

3.1 Overview

The system design for MobiVital is illustrated in Figure 5. The input
to the system is the entire complex UWB matrix (120 x 1500). As
shown in literature, both the magnitude and phase of a UWB signal
contain respiration waveform information. Therefore, MobiVital
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Figure 5: Overview of the MobiVital system design. N is the
number of sequences classified as noninverted.

*

computes the magnitude and phase for each distance bin and juxta-
poses them as parallel channels, resulting in 240 possible candidates.
The phase is calculated based on the angle of the complex I/Q value,
followed by an unwrap operation to handle gaps around 27. These
240 candidates are then filtered using our Inversion Detector, Algo-
rithm 1, which removes any sequences classified as inverted. The
remaining candidates are scored by the autoregressive predictor.
Finally, MobiVital selects the sequence with the highest MobiVital
score and returns both the selected sequence and its score.

3.2 Autoregressive Predictor

MobiVital leverages an autoregressive deep learning model to auto-
matically select the best sequence to represent the user’s respiration,
among all the candidate time series. The intuition of this method
is to leverage the tendency of deep neural networks to overfit the
distribution of their training datasets. This tendency is often con-
sidered to be detrimental, causing neural networks to work well on
data with a similar distribution to the training dataset, and work
poorly if the distribution of data is different. However, we see oppor-
tunities in this generalization limit. If we can train a neural network
that learns the dynamics or the distribution of high-quality respira-
tion data, the neural network’s performance becomes an indicator:
a good performance suggests “in distribution” (high signal quality).

The autoregressive model training pipeline is detailed in part
a of Figure 6(a). The word “autoregressive” means the task of the
model is to reconstruct part of the sequence given some history
values. Since we want the model to learn the dynamics of respiration
waveforms, we construct a training dataset using (1) ground truth
respiration waveform from the on-body sensors and (2) high-quality
UWB-measured respiration waveform. High-quality sequences are
defined as sequences that have a correlation coefficient with the
ground truth respiration waveform higher than a threshold ro = 0.9.

The sequences in the training dataset are then processed using a
sliding window of 4.5 seconds. Inside the window, the first 4 sec-
onds (200 samples) become the “history”, and the remaining 0.5
seconds (25 samples) become the “future”. Then the sliding win-
dow moves forward in increments of 0.5 seconds to generate more
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Figure 6: Autoregressinve predictor. Part A shows the autoregressive model training pipeline. Part B shows the model’s behavior
during deployment when exposed to high and low-quality input sequence examples.

Algorithm 1: Breath Waveform Inversion Detector

Input: Candidate time series y € RT, r,; = 1.0
Output: Indicator of Waveform Inversion inv € [0, 1]
1 ys < SavitzkyGolayFilter(y,order =5, frame_len = 100) ;
/* Smooth the original waveform x/
Ppos — FindPeaks(ys, prominence = 0.1)
Wpos < PeakWidth(ys, Ppos, rel_height = 0.5)
Wpos < Average(Wpos)
Pino < FindPeaks(—ys, prominence = 0.1)
Wino < PeakWidth(—ys, Piny, rel_height = 0.5)
Winy — Average(Wino)
if Wpos/Wino < r'sn then inv « 0 else inv « 1

® N A A R W N

histories and futures. Our autoregressive reconstruction model is
a lightweight 2-layer LSTM model followed by a linear layer, as
LSTM models are regarded as effective and efficient solutions for
sequential problems. The model takes the history as the input and
predicts the future sequence of 0.5s. The Mean Squared Error (MSE)
between the predicted segment and the future segment is used as
the loss function. This MSE loss is only used during training. The
details of the model structures are shown in Figure 6(a). The model
hyperparameters and history/future lengths are optimized using
Bayesian hyperparameter turning (see [8] for additional details).
Figure 6(b) shows the autoregressive model’s behavior during
deployment time (with the model’s weights frozen). The model ac-
curately reconstructs the time series if the candidate measurement
is high-quality, i.e., the signal “looks like” the respiration signals the
model was trained on. However, if the input sequence is low-quality
and the model was not trained on similar data, the model struggles
to reconstruct the sequence, resulting in a high reconstruction loss.

3.3 Inversion Detector

The UWB candidate time series may be inverted with respect to the
direction of chest movement. While this issue is often overlooked in
prior works focused on breathing rate estimation, it is crucial for our
goal of producing high-quality waveforms. Therefore, we propose
a biology-informed algorithm to detect inverted UWB sequences,
utilizing the morphology of respiration.

The algorithm is inspired by the biological nature of human res-
piration. During inhalation, chest and abdominal muscles contract
to draw air into the lungs. Upon exhalation, these muscles relax,
allowing the lungs to deflate [5]. Since holding air in the chest re-
quires active muscle effort, normal respiration waveforms typically
show spikes during active inhalation-exhalation, with longer gaps
between these spikes. In other words, if we define the deflated chest
position as “0” and the inflated position as “17, the “duty cycle” - +1 %
should be less than 0.5.
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Figure 7: Example of the breath waveform inversion detec-
tor. The upper original signal has an average peak width of
119.46 and the mirrored version below has 70.17. The signal
is considered to be inverted.

Based on this observation, we propose the algorithm detailed in
Algorithm 1. The procedure starts by applying a Savitzky-Golay
finite impulse response (FIR) smoothing filter with a polynomial or-
der of 5 and a frame length of 100 to process the candidate sequence,
removing jitters and microspikes. After smoothing, we identify the
peaks in the signal and calculate the average peak width Wjs. The
peak width is determined at height h = h,r — 0.5P, where P is the
prominence of the peak. The same procedure is then applied to the
flipped version of the signal, yielding W;p,. The signal is classified
as inverted if Wpos/Winy < r;p, and as non-inverted otherwise.

3.4 MobiVital Score

As the last step, the MobiVital score is a metric produced by the
autoregressive model used to determine the quality of each possible
candidate sequence. Alg. 2 describes the calculation algorithm. The
signal y is firstly chopped into a history set TS and a future set
TSfut_For all the entries in This, we use the autoregressive model to
predict a future t,,,¢4. Then, we calculate the correlation coefficient

re,i between t,,.4 and Tlf ut, Averaging over all the correlation co-
efficient r.;’s gives us the MobiVital score ms € [—1,1]. In this

Algorithm 2: MobiVital Score Calculation

Input: Candidate time series y € RT
Output: Mobivital score ms € [—1,1]
This, Tfut  SlidingW indow(y)
ms — 0, len — ||T"5]|
LOOP FOR i FROM 1 TO len

tpred < AutoregssiveModel(Tl.”is)

5 Mg« mg+ CorrCoeff(Tif“t, tprea)/len

W N =
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algorithm, no additional ground truth signal is used and the signal
waveform itself serves as the ground truth, that is why we call the
pipeline “self-supervised”.

4 Evaluations

Dataset Creation. Our dataset includes 12 subjects, each contribut-
ing more than hour of tripod-mounted sensor data. To assess our
model’s generalization ability, we reserve data from users G, H, I,
and ] for final evaluations, while the remaining 8 users’ data are
used for training and hyperparameter optimization.

Metric. The correlation coefficient r is used as the metric to quan-
tify the similarity between a UWB sequence and the ground truth. It
is robust to constant offsets and scaling but sensitive to time shifts,
noise, and distortion, making it ideal for evaluating signal quality.
Two time series need to have not only aligned peak locations but
also similar morphologies (shape and trend) to receive a high r
score. The bounded range r € [—1, 1] also provides a standardized
measure superior to L1- or L2-norms.

Baselines. We evaluate three widely used baseline methods: Vari-
ance [1, 2, 11], Signal-to-Noise Ratio (SNR) Estimation [4], and Con-
stant False Alarm Rate (CFAR) [13]. All methods follow the same
initial pre-processing: a loop-back filter removes static clutters [13],
followed by a detrending algorithm to eliminate polynomial trends.
The methods then diverge in their approaches, as detailed below.

e Variance: Calculates the variance of each distance bin’s signal
and selects the bin with the highest peak after applying peak
detection. Operates on amplitude only.

o CFAR: Performs FFT on each bin’s time series to generate a range-
FFT map, then applies CFAR to identify the most significant peak.
Operates on amplitude only.

o SNR: Computes the ratio of respiration-band energy (0.2-0.7 Hz)
to total energy after FFT, selecting the bin with the highest SNR.
Uses both amplitude and phase.

For fairness, our inversion detected algorithm 1 is applied to
all the baseline methods as well. For CFAR and Variance, if a time
series is determined to be inverted, the time series will be flipped, as
these two baselines require peak detection on the entire landscape.
In MobiVital and SNR, a time series loses its “candidacy” if deter-
mined inverted, since these two baselines can individually score
each sequence. Finally, an oracle gives the theoretical upper bound
performance by selecting the sequence with the highest correlation
to the ground truth (unavailable in real-life applications).

4.1 Quantitative Results

MobiVital score as a surrogate of signal quality. For the score
to be a good surrogate of the signal quality, it must ideally be
bounded and have a positive linear relationship with the ground
truth correlation. The MobiVital score satisfies both of these criteria.
Fig. 8 shows the MobiVital score on all the time series from the eight
subjects used for developing MobiVital. The score has an almost
1 to 1 relationship with the ground truth correlation. The score is
also strictly bounded from -1 to 1 inclusive. Thus, the MobiVital
score can be used to measure the quality of the signal, without any
knowledge of the ground truth respiration waveform.
Comparison with the baselines. In Table 2, we compare the
performance of MobiVital with the three baselines. The table shows
that MobiVital has a clear advantage over the baselines in waveform
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Figure 8: MobiVital score on all candidate time series. This

figure shows that MobiVital score can be a good surrogate of
the time series quality.

quality and is the closest to the oracle. MobiVital improves upon
the closest baseline, SNR, by 7%, achieving a score of 0.819. Without
our inversion detection algorithm, the gap increases to 34%. The
advantage is even greater over Variance and CFAR, likely because
these methods prioritize the strongest human body reflections,
which do not always correspond to the best respiration signal.

Method  w/InvDet. w/oInv Det.
MobiVital 0.819 0.816
SNR 0.745 0.475
CFAR 0.516 0.218
Variance 0.514 0.225
Oracle - 0.943

Table 2: Average score of methods

Ablation study on the inversion detector. Table 2 and Fig-
ure 9 show the improvement the inversion algorithm brings. The
inversion algorithm doubles the performance for CFAR, Variance,
and SNR. MobiVital sees a smaller 0.03 gain since the autoregressive
model already rejects some inverted signals (the model is trained
on a dataset without any inverted signals). The inversion detection
algorithm is very lightweight with minimal computation overhead.

Mobivital FFT CFAR STD
0.75 I
2 0.50
o
[w}
0 0.25
0.00 3 = -
w/Inv  w/olnv w/Inv w/olnv w/Inv w/olnv w/Inv w/olInv
Det. Det. Det. Det. Det. Det. Det. Det.

Figure 9: Comparison of methods with and without the in-
version detection algorithm.

Downstream task: respiration rate estimation. We evalu-
ate MobiVital ’s impact on downstream tasks, using respiration
rate (RR) estimation as an example. Ground truth RR is derived
using a Savitzky-Golay filter and peak detection. Table 3 shows
that MobiVital significantly reduces RR error compared to base-
lines, confirming that higher-quality signals improve downstream
analysis accuracy and reliability.

5 Limitations and Future Work
Improving Dataset Diversity. The dataset used to develop Mo-
biVital contains 12 users, and the data from the tripod-mounted
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MobiVital
Seq. Selection Method obiVita SNR | CFAR | Variance
(Proposed)
RR Error (bpm) 0.68 1.02 | 1.73 1.78

Table 3: Comparison of the respiration rate estimation error
with different sequence selection methods.

platform is about 12 hours. Despite being a relatively large user
study, the current dataset is limited to an ideal lab setting with
static-sitting subjects. Also, as a dataset collected in a university, the
experiment subjects can have demographic biases such as age and
health conditions. Expanding experiments to more realistic condi-
tions, including real-world field studies and large-scale experiments
involving diverse populations and medical treatments, would signif-
icantly enhance the practical effectiveness of the proposed dataset.
Building More Applications and A Real-time System. We have
demonstrated that MobiVital improves the time series quality of
UWB-respiration signals, leading to more accurate respiration rate
calculation. It would be valuable to further investigate whether ap-
plications that require fine-grained respiration waveform analysis,
such as inhale-exhale ratio estimation and tidal volume measure-
ment, can benefit from MobiVital, which is a primary motivation of
this work. Another important aspect is the feasibility of building a
real-time system. MobiVital’s training and evaluation are conducted
offline on a PC with pre-collected datasets. However, we have de-
signed MobiVital with efficiency in mind: the autoregressive model
is simplified to a two-layer LSTM, and the inversion detection al-
gorithm is computationally lightweight. Integrating MobiVital into
existing mobile applications, particularly “breath coaching” apps
on smartphones and smartwatches, could enable real-time respira-
tion sensing and feedback. These apps currently rely on verbal or
visual cues to guide users in respiration training for activities like
yoga and meditation. A system that remotely monitors respiration
and provides real-time guidance would significantly enhance user
experience and training effectiveness.

Mitigating Sensor-subject Relative Motion. Motion interfer-
ence in vital sign monitoring systems is becoming an increasingly
interesting topic. Researchers have studied mitigating the move-
ment of the sensing platform [12] and the body movements of
the subjects [14]. The MobiVital system mostly considers static
subjects during sleeping, sedentary activities, or meditations. How-
ever, A part of our dataset is collected with a handheld sensor plat-
form, where the relative motion between the sensor and the subject
contaminates the data and may even mask the vital signals. We
hope future research efforts can lead us to high-quality respiration
waveforms when the user is exercising, or using robot/cellphone-
mounted sensors. Finally, conducting a longitudinal evaluation that
captures body variations throughout the day or after different phys-
ical activities would offer deeper insights into the robustness and
real-world applicability of MobiVital.

6 Conclusions

In this work, we highlight previous overlooked signal quality is-
sues in UWB-based respiration monitoring, such as deformation
and inversion. We introduce MobiVital, a system that uses a self-
supervised autoregressive model and a bio-informed algorithm
to generate high-quality respiration waveforms. Our MobiVital
score effectively serves as a signal quality surrogate. The system
design strategically leverages the limited generalization of neural
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networks, turning a common limitation into an engineering ad-
vantage. Future work can enhance MobiVital by improving dataset
diversity, optimizing for real-time mobile applications in breath
coaching, and addressing the challenges caused by sensor-subject
relative motion to expand applicability to dynamic scenarios like
exercise or wearable sensing.
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