
Online Federated Multitask Learning
Rui Li

University at Buffalo
Buffalo, NY, USA
rli35@buffalo.edu

Fenglong Ma
Pennsylvania State University

University Park, PA, USA
fenglong@psu.edu

Wenjun Jiang
University at Buffalo
Buffalo, NY, USA

wenjunji@buffalo.edu

Jing Gao
University at Buffalo
Buffalo, NY, USA
jing@buffalo.edu

Abstract—With the popular use of mobile devices, it be-
comes increasingly important to conduct analysis on distributed
data collected from multiple devices. Federated learning is a
distributed learning framework which takes advantage of the
training data and computational ability of scattered mobile
devices to learn prediction models, and multi-task learning
infers personalized but shared models among devices. Some
recent work has integrated federated and multi-task learning,
but such approaches may be impractical and inefficient in the
online scenario, e.g., when new mobile devices keep joining the
mobile computing system. To address this challenge, we propose
OFMTL, an online federated multi-task learning algorithm,
which learns the model parameters for the new device without
revisiting the data of existing devices. The model parameters
are derived by an effective way that combines the information
inferred from local data and information borrowed from existing
models. Through extensive experiments on three real datasets, we
show that the proposed OFMTL framework achieves comparable
accuracy to the existing algorithms but with much smaller
computation, transmission and storage cost.

Index Terms—Federated learning, multi-task relationship
learning, online learning

I. INTRODUCTION

With the rising popularity of mobile devices such as mobile
phones and portable sensors, we observe explosive growth
of data, which may be scattered on distributed device nodes.
Traditional data analysis approaches require that all the data
are transmitted to a central server. However, it could be
inefficient or infeasible to transmit such decentralized data
to the center due to privacy concerns, transmission cost, and
limited centralized storage. Then how to conduct analysis on
the huge amount of decentralized data without transmitting
them to the center becomes an important task.

In this paper, we focus on classification, which is to infer
models from training data scattered on different devices and
use the models for prediction. To enable distributed classi-
fication (i.e., distributed learning), training data should be
kept on individual mobile devices and the computation is
conducted on local data collected on each device. To learn a
global model, intermediate parameters are transmitted between
mobile devices and the central server. This general distributed
learning framework is called federated learning and a variety
of algorithms have been proposed [1], [2].

Typically, a federated learning algorithm assumes that a
global model is shared by all the local devices [3]. The
objective is to infer this global model without transmitting
data to the central server. However, in many applications,
although there exist similarities among local models, they are

not exactly the same. On the other hand, there are usually
insufficient training data to derive an accurate local model.
Therefore, ideally, we may want to derive local models that
share some common characteristics by jointly learning from
distributed data. This objective can be naturally captured by
federated multi-task learning framework [4].

However, federated multi-task learning does not consider
the online scenario, in which case new users or new devices
appear and we aim to infer an effective model for the new
user timely and update existing models in an efficient manner.
As existing algorithms are derived on batch data, we have
to rerun federated multi-task learning algorithms whenever
new devices join the system, and this may lead to waste in
both bandwidth and computational resources as well as long
computational time. To overcome this limitation, we propose
a novel algorithm that can efficiently and effectively derive
model parameters for a new device based on its local data and
existing models. We also show that the proposed algorithm
achieves comparable accuracy to the existing algorithms but
with much smaller computation,transmission and storage cost.

II. PROBLEM STATEMENT

Fig. 1. Overall Framework for Online Federated Multi-Task Learning.

Consider a scenario that a set of users or devices col-
laborate together to learn personalized classifiers for some
purpose, e.g., to detect daily human activity. The data are
the sensory data (e.g., accelerometer, gyroscope) collected
from users’ mobile devices. Each user can manually label
a small portion of the data. Here, we introduce a central
server to coordinate the training process so that each user
only needs to communicate with the central server. During
the training process, the users require to keep their data on
their own devices to avoid the leakage of private information.
Since each user may demonstrate different patterns in their

The copyright notice: 978-1-7281-0858-2/19/$31.00 ©2019 IEEE

activities, they also require to learn personalized classification
models instead of a common one. The problem that we aim to
address in this paper is: When a new device joins the system,
without invoking the communication between the server and
the current devices in the system, how to learn an accurate
personalized classification model for this new device?

Without loss of generality, we consider that there are
already m devices in the system as shown in Fig-
ure 1. The dataset that the device t owns is denoted as
{(x1

t , y
1
t), (x2

t , y
2
t), · · · (xnt

t , y
nt
t)} (t = 1 · · ·m), where xit ∈

Rd represents the i-th data, yit ∈ {−1,+1} is the corre-
sponding label, and nt is the number of data stored by this
device. Using their own datasets, each device t can learn a
local personalized model. The parameters of each local model
can be represented by wt ∈ Rd. We use ft(x) = wt · x
to represent the decision boundary. To guarantee the privacy
of data, without uploading data to the central server, only
local model parameters are sent to the central server. We
use the weight matrix W := (w1,w2, · · · ,wm) ∈ Rd×m to
represent all the model parameters of current devices uploaded
in the system and introduce a precision matrix Ω ∈ Rm×m
to model the relationships between each pair of devices. Both
parameters are stored on the central server.

When a new device joins the system, the goal of OFMTL is
to learn model parameter wm+1 for the new device and update
the parameters from weight matrixW and the precision matrix
Ω to Ŵ := (w1,w2, · · · ,wm,wm+1) ∈ Rd×(m+1) and
Ω̂ ∈ R(m+1)×(m+1), without the participation of any existing
device in the system. As shown in Figure 1, the new device
first trains its local model fm+1(x), and the parameters of
this model is represented by wm+1, which is then sent to
the central server. Based on the uploaded local parameters
wm+1, the proposed model can update the parameters W
and Ω, without revisiting existing devices. Using the updated
parameters Ŵ and Ω̂, the new device updates its parameters
again.

III. METHODOLOGY

In this section, we describe the proposed online feder-
ated multi-task learning framework OFMTL. We model this
problem as an optimization problem where the personalized
hyperplane of a new mobile device will be learned based on
not only the training data of this device, but also the knowledge
“borrowed” from others devices, without explicitly utilizing
the raw training data of them.

A. Online Federated Multi-Task Learning

Multi-Task Relationship Learning. The proposed online
federated multi-task learning framework inherits the spirit of
traditional multi-task relationship learning (MTRL) [5]. The
key idea of MTRL is to model the global relationships between
the tasks (i.e., the personalized classification models of the
devices) and formulate the learning problem as a convex
optimization problem.

Mathematically, the MTRL is formulated as follows:

min
W ,Ω

m∑
t=1

1

nt

nt∑
i=1

lt(w
>
t x

i
t, y

i
t) +

λ

2
tr(WΩW>),

s.t. tr(Ω−1) = 1,
Ω−1 � 0.

where lt is the loss function for device t, which can be an
arbitrary convex function. W := (w1,w2, · · · ,wm) ∈ Rd×m
is the weight matrix, and Ω ∈ Rm×m is the precision matrix.

Assume that one new device tries to join the system
with m existing users. We use Xm+1 to denote the dataset
of this new device, and wm+1 to denote the model pa-
rameter for this new device. After the new device joins
the system, the new weight matrix can be expressed as
Ŵ := (w1,w2, · · · ,wm,wm+1) and the precision matrix
can be expressed Ω̂ ∈ R(m+1)×(m+1). Notice that the first m
columns in Ŵ are fixed, and only wm+1 needs to be learned.
Therefore, we formulate the proposed framework as a convex
optimization problem as follows:

min
wm+1,Ω̂

1

nm+1

nm+1∑
i=1

lim+1(w>m+1x
i
m+1, y

i
m+1) +

λ

2
tr(Ŵ Ω̂Ŵ

>
)

s.t. tr(Ω̂
−1

) = 1,

Ω̂
−1
� 0.

(1)

To show the convexity of the above formula, we first
demonstrate the convexity of the regularizer tr(Ŵ Ω̂Ŵ

>
).

Actually, the regularizer has been proved to be joint convex
w.r.t Ŵ and Ω̂

−1
when Ω̂

−1
is a positive semidefinite matrix

(satisfied by the second constraint) [5]. Since wm+1 is one
column of Ŵ , the regularizer is also joint convex w.r.t wm+1

and Ω̂
−1

. Given the loss function and the constraints are
both convex w.r.t all the variables, the proposed framework
is convex w.r.t wm+1 and Ω̂

−1
.

B. Alternating Optimization Algorithm

Although Eq. (1) is convex w.r.t. wm+1 and Ω̂
−1

jointly,
optimizing the objective function w.r.t. all the variables simul-
taneously is still not easy. To solve this problem, we propose
an alternating optimization algorithm. In each iteration of the
algorithm, we first optimize wm+1 of the new device with
fixed precision matrix Ω̂, and then update the precision matrix
Ω̂ based on the model parameter wm+1 that we just learned
in the first step and the model parameters w1,w2, · · · ,wm

of all the previous devices.
Updatewm+1. We first fix Ω̂ and optimize the optimization

problem w.r.t wm+1. Since the loss function lim+1(·) can be
seen as a function of wm+1, we can rewrite Eq. (1) as follows:

min
wm+1,zm+1

1

nm+1

nm+1∑
i=1

lim+1(−zim+1) +
λ

2
tr(Ŵ Ω̂Ŵ

>
).

s.t. w>m+1 · xim+1 + zim+1 = 0.

The Lagrangian of the above optimization problem is ex-
pressed as:

L(wm+1, zm+1,αm+1) (2)

=
1

nm+1

nm+1∑
i=1

[lim+1(−zim+1)− αim+1z
i
m+1]

− 1

nm+1

nm+1∑
i=1

αim+1w
>
m+1x

i
m+1 +

λ

2
tr(Ŵ Ω̂Ŵ

>
),

where − 1
nm+1

αim+1 are introduced as the Lagrange multipli-
ers.

The Lagrangian dual function can be expressed as:

g(αm+1)

= inf
wm+1,zm+1

L(wm+1, zm+1,αm+1)

= − sup
wm+1

[
1

nm+1

nm+1∑
i=1

αim+1w
>
m+1x

i
m+1 −

λ

2
tr(Ŵ Ω̂Ŵ

>
)]

− 1

nm+1

nm+1∑
i=1

li∗m+1(−αim+1)

where li∗m+1(·) is the conjugate of lim+1(·) [6], which
is defined as li∗m+1(−αim+1) := sup−zim+1

(zim+1α
i
m+1 −

lim+1(−zim+1)). In the above formula, tr(Ŵ Ω̂Ŵ
>

) can
be extended, and the terms that relate to wm+1 are
2
∑m
i=1 Ω̂i m+1w

>
i wm+1 + Ω̂m+1 m+1w

>
m+1wm+1. If we

assume ∂L
∂wm+1

= 0, we have:

wm+1 =
bm+1 −

∑m
i=1 Ω̂i m+1wi

Ω̂m+1 m+1

(3)

with

bm+1 =
1

λnm+1

nm+1∑
i=1

αim+1x
i
m+1.

In Eq. (3), obviously, bm+1 can be computed from the
new mobile device directly since it only involves data xim+1

which resides on the new mobile device. While the other two
terms

∑m
i=1 Ω̂i m+1wi and Ω̂m+1 m+1 can only be obtained

from the central server since Ω̂ and wi with i = 1, 2, · · · ,m
only reside on the central server. In this way, instead of
transmitting raw data residing on the new mobile device to
the central server, we only need to transmit two variables∑m
i=1 Ω̂i m+1wi and Ω̂m+1 m+1 from the central server to

the new mobile device, which eliminates the privacy concern
and dramatically reduces the communication overhead.

From Eq. (3), in order to compute wm+1, we have to
compute αm+1. Then we go back to g(αm+1) and maximize
the dual function

max
αm+1

g(αm+1),

which is equivalent to

min
αm+1

{ 1

nm+1

nm+1∑
i=1

li∗m+1(−αim+1) +
1

nm+1

nm+1∑
i=1

αim+1w
>
m+1x

i
m+1

(4)

− λ

2
tr(Ŵ Ω̂Ŵ

>
)}.

We can plug Eq. (3) into Eq. (4). To accelerate the con-
vergence speed, we use the stochastic dual coordinate ascent
method to compute the αm+1 [7]. Given that ∆α>m+1 :=
(∆α1

m+1∆α2
m+1 · · ·∆α

nm+1

m+1) ∈ Rnm+1 is a small change of
αm+1, we can approximate the dual problem with a quadratic
function and optimize the following optimization problem:

min
∆αm+1

g(∆αm+1,αm+1,wm+1) (5)

with

g(∆αm+1,αm+1,wm+1)

=
1

nm+1

nm+1∑
i=1

li∗m+1(−αim+1 −∆αim+1) +
1

nm+1
w>m+1Xm+1∆αm+1

+
1

2λn2
m+1Ω̂m+1 m+1

∆α>m+1X
>
m+1Xm+1∆αm+1 + C(αm+1),

where C(αm+1) represents a function which is only related
to αm+1. When we compute ∆αm+1, it can be removed
from g(∆αm+1,αm+1,wm+1). From Eq. (5), it is obvious
to see that ∆αm+1 can be computed on mobile device m+ 1
since wm+1 and Xm+1 all reside on mobile device m + 1.
The details about the local SDCA (stochastic dual coordinate
ascent) algorithm will be presented in Algorithm 2.

Update Ω̂. After updating wm+1, we fix it and then update
Ω̂. Assume that there are m devices existed in the system,
and the corresponding precision matrix is Ω ∈ Rm×m. When
a new device joins the system, we initialize the new precision
matrix Ω̂ as

Ω̂ :=

(m
m+1Ω 0

0> 1
m+1

)
. (6)

In this way, Ω̂ satisfies the two constraints in Eq. (1). To
update Ω̂, we need to solve the convex optimization problem
(i.e., Eq. (1)) over Ω̂ with fixed wm+1 on the central server.

C. Model Parameters Retraining

Since the join of new devices brings more training data,
which may potentially benefit the early devices. Retraining the
model parameters may help the early devices to learn a more
accurate decision boundary. Assume that at the beginning,
there are m0 devices in the system (m0 << n). When
a new device joins the system, we conduct the proposed
OFMTL to learn the model parameter for it, which takes
O(1) communication overhead. We do not conduct the model
parameter retraining until the number of the newly added
devices in the system reaches a constant ratio (denoted as
η, η > 0) of m, where m is the number of devices in the
current system when we retrain the model parameters. m is

initialized with m0. The model parameters retraining can be
done with a multi-task relationship learning algorithm, such
as MOCHA [4]. After the model parameter retraining, we
update m to be (1+η)m and continue from the first procedure.
When the number of users in the system reaches n, the total
communication overhead is still O(n).

D. Algorithm

The pseudo code of the proposed OFMTL is demonstrated
in Algorithm 1. In Algorithm 1, the derivation of ∆αm+1 is
based on the stochastic dual coordinate ascent algorithm [7].
Here, we summarize the stochastic dual coordinate ascent
algorithm on the mobile device m+1 in Algorithm 2 in which
ei ∈ Rnm+1 is a one-hot basis vector whose the i-th element
is 1, and the other elements are 0.
Algorithm 1 Online Federated multi-task Learning (OFMTL)
Input:

Existing devices in the system: Data Xt and fixed model
parameter wt for t = 1, 2, · · · ,m, precision matrix Ω ∈
Rm×m;
New Device: Data Xm+1;

Initialize:
α

(0)
m+1 := 0 ∈ Rnm+1 , Ω̂

(0)
:=

(m
m+1Ω 0

0> 1
m+1

)
∈

R(m+1)×(m+1), w(0)
m+1 := 0 ∈ Rd;

1: for i = 0, 1, · · · do
2: for t = 0, 1, · · · do
3: // Solving local subproblem;
4: Derive ∆α

(t)
m+1 from Eq. (5);

5: // Local update;
6: α

(t)
m+1 ← α

(t−1)
m+1 + ∆α

(t)
m+1;

7: Update w(t)
m+1 according to Eq. (3);

8: end for
9: The new device sends wm+1 to the server;

10: Ω̂
(p)
← solve problem on server for fixed Ŵ , update

Σ̂ = Ω̂
−1

, and server sends
∑m
i=1 Ω̂i m+1wi and

Ω̂m+1 m+1 to the new device.
11: end for
Algorithm 2 Stochastic dual coordinate ascent to derive
∆αm+1

Input:
N > 1, αm+1, wm+1, and data Xm+1

Initialize:
∆αm+1 := 0 ∈ Rnm+1

1: for n = 0, 1, · · · , N do
2: choose i ∈ {1, 2, · · · , N} randomly
3: ∆αim+1 ← min∆αi

m+1
(∆αm+1 +

∆αim+1ei,αm+1,wm+1)
4: ∆αm+1 ←∆αm+1 + ∆αim+1ei
5: end for
The proposed algorithm (Algorithm 1) is composed of the

following three parts: (1) Computing the dual variable αm+1

on the new mobile device m + 1 using the local SDCA
algorithm with objective function (5), which is in the pseudo
code line 4; (2) Updating wm+1 with fixed precision matrix Ω̂

and utilizing the dual variable αm+1 computed in the first part,
which is in the pseudo code line 7; (3) Updating the precision
matrix Ω̂ on the central server based on the model parameter
wm+1 computed on the second part and all the previous model
parameters w1,w2, · · · ,wm saved on the server, which is in
the pseudo code line 10. Among theses three parts, (1) and
(2) are implemented on the new mobile device, while (3) is
implemented on the central server.

IV. EXPERIMENTS

In this section, we will introduce the experimental settings
and then demonstrate the performance of the proposed algo-
rithm on three real-world datasets.

A. Experimental Settings

There are three datasets used to validate the performance
of the proposed algorithm.

(1) Human Activity Recognition (HAR) [8]. This dataset
contains the readings of accelerometer and gyroscope of smart-
phones when each participant performs six activities. And we
try to separate the activities of sitting and standing. The total
number of features is 561, and the number of participants is
30. Each participant is regarded as a separate task.

(2) Eating Recognition via Google Glass (GLEAM) [9].
This dataset consists of the data collected from Google Glass
spanning eating, brief walks and other activities from 38
participants for two hours. We generate a 144-element vector
for each data, including 5 statistical and 3 spectral features for
6 sensors with 3 axes. Every participant is considered as a task,
and we make predictions between eating and other activities.

(3) Eating Habits Monitoring (EHM) [10]. This dataset
consists of acoustic signals collected from wearable necklace-
like devices that recognize the eating habits of human beings.
There are 4 participants performing activities: eating chips and
drinking water. Each participant can be regarded as a separate
task. We extract 20 features in the time domain and frequency
domain as mentioned in [10].

Baselines. To fairly evaluate the performance of the pro-
posed model OFMTL, we adopt three baselines.

(1) Global SVM. In this setting, we assume that all the raw
data storing on different mobile devices are transmitted to the
server. We then train a classifier using SVM (Support Vector
Machines) on the server, i.e., the global model. All the mobile
devices (i.e., local servers) share the same parameters.

(2) Local SVM. For the local model, we assume that there
is no central server, and each mobile device only utilizes the
data residing on itself to train its local SVM. For the online
setting, if a new mobile device joins the system, the new device
simply utilizes its own local data to train the local model.

(3) MOCHA [4]. MOCHA is the state-of-the-art federated
multi-task learning algorithm. When learning the classifier,
MOCHA considers both the server and each local mobile
device at the same time. Each mobile device is considered as
a task, and intermediate parameters are transmitted between
all the local mobile devices and the central server. However,
MOCHA cannot deal with the online setting. In the experi-

ments, when a new mobile device is added to the system, we
rerun the MOCHA algorithm on all the data.

Implementation Details. We assume that there are m0

users already in the current system, and new users join the
system one by one. For the aforementioned three datasets, we
choose different values of m0, as the number of participants
is different. For the HAR and GLEAM datasets, we set m0 as
10, and for the EHM dataset, m0 = 1. The proposed OFMTL
needs to update the overall model when the number of new
devices exceeds a threshold. In the experiments, this threshold
is set as 1.5 times of the number of current devices.

Evaluation Metric. We use average prediction error and
model training time as the evaluation metric. Average predic-
tion error refers to the average error rate of the classifiers based
on their predictions. Meanwhile, model training time refers to
the computing time our system takes for model updating when
the number of devices gradually increases from m0 to m. Each
time when a new device joins the system, for our proposed
OFMTL, the increment of model training time equals the time
we perform Algorithm 1. While for MOCHA, it equals the
time we retrain the model from scratch on all existing devices.
The model training time is measured by seconds.

B. Performance Evaluation

10 15 20 25 30

of Mobile Devices

0

0.02

0.04

0.06

0.08

0.1

A
v

er
ag

e
P

re
d

ic
ti

o
n

 E
rr

o
r

Global SVM

Local SVM

MOCHA

OFMTL

(a) HAR Average Prediction Error

10 15 20 25 30

of Mobile Devices

0

50

100

150

M
o

d
el

 T
ra

in
in

g
 T

im
e

(s
ec

)

Global SVM

Local SVM

MOCHA

OFMTL

(b) HAR Model Training Time

Fig. 2. Average Prediction Error and Model Training Time V.S. the Number
of Mobile Devices in the system on HAR Dataset.

10 15 20 25 30 35

of Mobile Devices

0

0.05

0.1

0.15

0.2

0.25

0.3

A
v

er
ag

e
P

re
d

ic
ti

o
n

 E
rr

o
r

Global SVM

Local SVM

MOCHA

OFMTL

(a) GLEAM Average Prediction Er-
ror

10 15 20 25 30 35

of Mobile Devices

0

100

200

300

400

500

600

M
o

d
el

 T
ra

in
in

g
 T

im
e

(s
ec

)

Global SVM

Local SVM

MOCHA

OFMTL

(b) GLEAM Model Training Time

Fig. 3. Average Prediction Error and Model Training Time V.S. the Number
of Mobile Devices in the system on GLEAM Dataset.

Figure 2-4 shows the average prediction error and model
training time with respect to the number of mobile devices
in the system on three datasets. In (a), X-axis represents the
number of mobile devices in the current system, and Y-axis
denotes the average prediction error. We can observe that
the proposed OFMTL achieves comparable or even better
performance compared with the state-of-art federated multi-

1 1.5 2 2.5 3 3.5 4

of Mobile Devices

0.08

0.1

0.12

0.14

0.16

0.18

0.2

A
v

er
ag

e
P

re
d

ic
ti

o
n

 E
rr

o
r

Global SVM

Local SVM

MOCHA

OFMTL

(a) EHM Average Prediction Error

1 1.5 2 2.5 3 3.5 4

of Mobile Devices

0

10

20

30

40

50

60

70

M
o

d
el

 T
ra

in
in

g
 T

im
e

Global SVM

Local SVM

MOCHA

OFMTL

(b) EHM Model Training Time

Fig. 4. Average Prediction Error and Model Training Time V.S. the Number
of Mobile Devices in the system on EHM Dataset.

task learning approach MOCHA, which is the batch algorithm
using all the data.

On the HAR and GLEAM datasets, the global model
(Global SVM) achieves the worst performance. This is rea-
sonable because the data stored on different local mobile
devices may have different characteristics or patterns. Without
considering these differences, just putting all the data together
to train a global model and then testing on each local mobile
device may lead to bad overall performance. The local model
(Local SVM) performs better than the global model, which
shows that Local SVM can capture the characteristics of data
residing on each mobile device.

On the EHM dataset, the local model performs slightly
better than the global model. This is reasonable because the
data collected from different users are the sound of drinking
water and eating chips, and even for different participants,
the acoustic signals may share similar patterns. When training
Global SVM, the amount of data is much larger than that of
data used for training Local SVM. Thus, the global model
achieves better performance.

In Figure 2(a), 3(a) and 4(a), we can observe that the pro-
posed online federated multi-task learning algorithm OFMTL
achieves similar performance as MOCHA. On the HAR
dataset, it is even better than MOCHA when there are 12
to 25 devices in the system. This is because MOCHA can
not guarantee to reach the global optimal point. When a new
device joins the system, OFMTL only learns a classifier for
the new device, the classifiers of previous devices will be
fixed. Meanwhile, MOCHA retrains the model with all mobile
devices. For those devices with fixed classifiers in OFMTL,
retraining the models on these devices with MOCHA may even
impair the performance. This demonstrates the effectiveness of
the proposed OFMTL.

On the HAR and GLEAM datasets, the performance of
OFMTL equals to that of MOCHA when there are 15 extra
mobile devices added into the system, i,e, the total number of
mobile devices is 25. That is because with 10 initial mobile
devices, when 15 new mobile devices join the system one
by one, which is up to the threshold (i.e., 1.5 times of the
number of original mobile devices), the proposed OFMTL
will update the overall model. This is the same as running
MOCHA. Thus, the performance of them is the same. The
same observation can been found on the EHM dataset when
the number of mobile devices is 3.

Figure 2(b), 3(b) and 4(b) shows the model training time
with respect to the number of devices in the system. We can
observe that MOCHA takes the most training time, local and
global SVM take the least, and the model training time of
OFMTL is in the middle. The model training time of MOCHA
grows fastest. That’s because when a new mobile device joins
the system, MOCHA retrains the model with all the mobile
devices. Each local device learns a local model, and then
sends it to the central server. The central server updates the
parameters and sends them back to each local server. This
procedure needs to repeat until MOCHA converges. While
for OFMTL, the training time grows linearly and slowly as
more devices join the system. This is consistent with the
analysis that the total communication overhead is O(n) in part
C of Section III. And it is because that OFMTL only learns
a classifier for the new device with its data and the stored
parameters, instead of learning classifiers for all previously
joined mobile devices. Meanwhile, we can also note that there
is a jump when the 25th device joins the system for HAR
and GLEAM dataset. This is because OFMTL reaches the
threshold and it invokes MOCHA. The same phenomenon is
also observed at the 3rd device for EHM dataset.

V. RELATED WORK
Federated learning was first proposed in [11], which

enables the mobile devices to learn a shared model without
transmitting the raw data residing on separate mobile devices
to the server [1]–[3], [12]. The state-of-the-art federated learn-
ing algorithm is FederatedAverging [3], in which case all
devices share a same model and ignore the difference between
users’ habits. In contrast, our algorithm designs personalized
model for every device in the system.

Multi-Task Learning is to learn individual models for
multiple related tasks. The most relevant categories are on-
line multi-task learning [13], [14] and distributed multi-task
learning [15], [16]. However, all previous online algorithms
focus on online data, which is different from the online task
setting studied in this paper. Distributed multi-task learning
algorithm DMTRL proposed in [15] assumes all devices solve
the sub-problem at the same scale, which contradicts the large
variability of data and system in federated learning scenario.

Federated Multi-Task Learning was firstly proposed in
[4]. Smith et al. found that distributed multi-task learning
is suitable to handle the federated learning problem. They
proposed MOCHA algorithm which provides a personalized
model for every mobile device by only transmitting inter-
mediate variables between mobile devices and the server.
And MOCHA allows devices to solve the sub-problems at
different accuracy. However, MOCHA is unable to handle the
ubiquitous setting that new devices keep joining the system.

VI. CONCLUSIONS

In this paper, we studied an ubiquitous problem found in
many intelligent mobile computing scenarios, which is online
federated multitask learning. In this task, we aim to infer
classification models for individual users or devices who join
the mobile computing system sequentially. We proposed an

effective algorithm named OFMTL, which infers a person-
alized model for each new user or device without revisiting
the data of existing devices. The relationships among data
residing on different devices are captured. The proposed model
updates the relationship matrices and derives the new model
efficiently. We conducted experiments on three real-world
datasets, and results show that OFMTL achieves compatible
results comparing to the batch federated multitask learning
algorithm with much less resource and computation costs.

ACKNOWLEDGEMENTS

This work is sponsored by NSF IIS-1553411. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] B. McMahan and D. Ramage, “Federated learning: Collaborative ma-
chine learning without centralized training data,” Google Research Blog,
vol. 3, 2017.

[2] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, 2016.

[3] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics, 2017, pp. 1273–1282.

[4] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” in Advances in Neural Information Processing
Systems, 2017, pp. 4424–4434.

[5] Y. Zhang and D.-Y. Yeung, “A convex formulation for learning task
relationships in multi-task learning,” in Proceedings of the Twenty-Sixth
Conference on Uncertainty in Artificial Intelligence, 2010, pp. 733–742.

[6] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[7] S. Shalev-Shwartz and T. Zhang, “Stochastic dual coordinate ascent
methods for regularized loss minimization,” Journal of Machine Learn-
ing Research, vol. 14, no. Feb, pp. 567–599, 2013.

[8] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. Reyes-Ortiz, “A public
domain dataset for human activity recognition using smartphones,” in
21th European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, 2013, pp. 437–442.

[9] S. A. Rahman, C. Merck, Y. Huang, and S. Kleinberg, “Unintrusive
eating recognition using google glass,” in 2015 9th International Con-
ference on Pervasive Computing Technologies for Healthcare, 2015, pp.
108–111.

[10] Y. Bi, W. Xu, N. Guan, Y. Wei, and W. Yi, “Pervasive eating habits
monitoring and recognition through a wearable acoustic sensor,” in Pro-
ceedings of the 8th International Conference on Pervasive Computing
Technologies for Healthcare, 2014, pp. 174–177.

[11] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” in Private Multi-Party Machine Learning, NIPS, 2016.

[12] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. M. Kiddon, J. Konečnỳ, S. Mazzocchi, B. McMahan
et al., “Towards federated learning at scale: System design,” in SysML
Conference, 2019.

[13] A. Saha, P. Rai, H. DaumÃ, S. Venkatasubramanian et al., “Online
learning of multiple tasks and their relationships,” in Proceedings of
the Fourteenth International Conference on Artificial Intelligence and
Statistics, 2011, pp. 643–651.

[14] G. Li, S. C. Hoi, K. Chang, W. Liu, and R. Jain, “Collaborative
online multitask learning,” IEEE Transactions on Knowledge and Data
Engineering, vol. 26, no. 8, pp. 1866–1876, 2013.

[15] S. Liu, S. J. Pan, and Q. Ho, “Distributed multi-task relationship
learning,” in Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2017, pp. 937–
946.

[16] J. Wang, M. Kolar, and N. Srerbo, “Distributed multi-task learning,” in
Artificial Intelligence and Statistics, 2016, pp. 751–760.

